Table of Contents

Front Matter

Copyright

Dedications

In Memoriam

Contributors

Preface

1. Sudden Deterioration in Neurologic Status
2. Agitation and Delirium
3. Management of Acute Pain in the Intensive Care Unit
4. Fever
5. Very High Systemic Arterial Blood Pressure
6. Low Systemic Arterial Blood Pressure
7. Tachycardia and Bradycardia
8. Arterial Hypoxemia
9. Acute Respiratory Failure
10. Pulmonary Edema
11. Polyuria
12. Oliguria
13. Hypernatremia and Hyponatremia
14. Hyperkalemia and Hypokalemia
15. Hyperphosphatemia and Hypophosphatemia
16. Hypomagnesemia
17. Hypocalcemia and Hypercalcemia
18. Hypoglycemia
19. Hyperglycemia
20. Anemia
21. Thrombocytopenia
22. Coagulopathy in the ICU
23. Jaundice
24. Gastrointestinal Bleeding
25. Ascites
26. Acute Abdominal Pain
27. Ileus
28. Diarrhea
29. Rash and Fever
30. Chest Pain
31. Biochemical or Electrocardiographic Evidence of Acute Myocardial Injury
32. Point-of-Care Ultrasound
33. Echocardiography
34. Cardiovascular Monitoring
35. Bedside Monitoring of Pulmonary Function
36. Arterial Blood Gas Interpretation
37. Tracheal Intubation
38. Tracheostomy
39. Mechanical Ventilation
40. Renal Replacement Therapy
41. Targeted Temperature Management and Therapeutic Hypothermia
42. Extracorporeal Membrane Oxygenation (Venovenous and Venoarterial ECMO)
43. Nutritional Support in Adults
44. Nutritional Support in Children
45. Early Ambulation in the ICU
46. Role of Early Mobilization in the Prevention of ICU-Acquired Weakness
47. Advanced Bedside Neuromonitoring
48. Coma
49. Use of Brain Injury Biomarkers in Critical Care Settings
50. Cardiopulmonary Cerebral Resuscitation
51. Delirium
52. Management of Acute Ischemic Stroke
53. Nontraumatic Intracerebral and Subarachnoid Hemorrhage
54. Seizures in the Critically Ill
55. Neuromuscular Disorders in Critically Ill
56. Traumatic Brain Injury
57. Spinal Cord Injury
58. Neuroimaging
59. Intensive Care After Neurosurgery
60. Key Issues in Pediatric Neurointensive Care
61. Patient-Ventilator Interaction
62. Noninvasive Positive-Pressure Ventilation
63. Weaning from Mechanical Ventilation
64. Adjunctive Respiratory Therapy
65. Hyperbaric Oxygen in Critical Care
66. Imaging of the Chest
67. Acute Respiratory Distress Syndrome
68. Aspiration Pneumonitis and Pneumonia
Hyperglycemia and Blood Glucose Control
Adrenal Insufficiency
Thyroid Disorders
Diabetes Insipidus
Metabolic and Endocrine Crises in the Pediatric Intensive Care Unit
General Principles of Pharmacokinetics and Pharmacodynamics
Poisoning: Overview of Approaches for Evaluation and Treatment
Resuscitation of Hypovolemic Shock
Mediastinitis*
Epistaxis
Management of the Postoperative Cardiac Surgical Patient
Intensive Care Unit Management of Lung Transplant Patients
Management of the Postoperative Liver Transplant Patient
Intestinal and Multivisceral Transplantation: The Ultimate Treatment for Intestinal Failure
Aortic Dissection
Splanchnic Ischemia
Abdominal Compartment Syndrome
Extremity Compartment Syndromes
Thromboembolization and Thrombolytic Therapy
Atheroembolization
Pressure Ulcers
Burns, Including Inhalation Injury
Thoracic Trauma
Abdominal Trauma
Pelvic and Major Long Bone Fractures
Pediatric Trauma
Management of the Brain-Dead Organ Donor
Donation After Cardiac Death (Non-Heart-Beating Donation)
Conversations with Families of Critically Ill Patients
Resource Allocation in the Intensive Care Unit
Basic Ethical Principles in Critical Care
Determination of Brain Death
Building Teamwork to Improve Outcomes
The Pursuit of Performance Excellence
Severity of Illness Indices and Outcome Prediction: Adults
Severity of Illness Indices and Outcome Prediction: Children
Long-Term Outcomes of Critical Illness
Mass Critical Care
Telemedicine in Intensive Care
Teaching Critical Care
Difficult Airway Management for Intensivists
Bedside Ultrasonography
Central Venous Catheterization
Arterial Cannulation and Invasive Blood Pressure
Bedside Pulmonary Artery Catheterization
Cardioversion and Defibrillation
Transvenous and Transcutaneous Cardiac Pacing
Ventricular Assist Device Implantation
Pericardiocentesis
Paracentesis and Diagnostic Peritoneal Lavage
Thoracentesis
Chest Tube Placement, Care, and Removal
Fiberoptic Bronchoscopy
Bronchoalveolar Lavage and Protected Specimen Bronchial Brushing
Percutaneous Dilatational Tracheostomy
Esophageal Balloon Tamponade
Nasoenteric Feeding Tube Insertion
Lumbar Puncture
Jugular Venous and Brain Tissue Oxygen Tension Monitoring
Intracranial Pressure Monitoring
Indirect Calorimetry
Extracorporeal Membrane Oxygenation Cannulation
Bedside Laparoscopy in the Intensive Care Unit
Pediatric Intensive Care Procedures
TEXTBOOK OF CRITICAL CARE

7TH EDITION

JEAN-LOUIS VINCENT, MD, PhD
Professor of Intensive Care Medicine
Université Libre de Bruxelles
Department of Intensive Care
Erasme University Hospital
Brussels, Belgium

EDWARD ABRAHAM, MD
Professor and Dean
Wake Forest School of Medicine
Winston-Salem, North Carolina

FREDERICK A. MOORE, MD, MCCM
Professor of Surgery
Head, Acute Care Surgery
Department of Surgery
University of Florida College of Medicine
Gainesville, Florida

PATRICK M. KOCHANEK, MD, MCCM
Ake N. Grenvik Professor in Critical Care Medicine
Professor and Vice Chairman
Department of Critical Care Medicine
Professor of Anesthesiology, Pediatrics, Bioengineering,
and Clinical and Translational Science
University of Pittsburgh School of Medicine
Director, Safar Center for Resuscitation Research
Pittsburgh, Pennsylvania

MITCHELL P. FINK, MD†
Professor of Surgery and Anesthesiology
Vice Chair for Critical Care
Department of Surgery
David Geffen School of Medicine at UCLA
Los Angeles, California

†Deceased.
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

With respect to any drug or pharmaceutical products identified, readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications. It is the responsibility of practitioners, relying on their own experience and knowledge of their patients, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.
We are pleased to bring you the Seventh Edition of *Textbook of Critical Care*. We’ve listened to our readers and have retained the acclaimed features that have made this book one of the top sellers in critical care, while also making changes to the organization and content of the book to best reflect the changes in the critical care specialty since the last edition.

Our tables, boxes, algorithms, diagnostic images, and key points, which provide clear and accessible information for quick reference, will continue to be featured prominently throughout the book. The Seventh Edition contains a wealth of new information, including an entirely new section on Common Approaches for Organ Support, Diagnosis, and Monitoring. In addition, we have added new chapters on Extra-corporeal Membrane Oxygenation, Biomarkers of Acute Kidney Injury, Antimicrobial Stewardship, Targeted Temperature Management and Therapeutic Hypothermia, Telemedicine in Intensive Care, and many more. Given the increased use of bedside ultrasonography, a new chapter addressing best practices with this now ubiquitous tool has been added. All chapters throughout the book have been revised to reflect new knowledge in the field and, thus, changes in the practice of critical care medicine.

Textbook of Critical Care has evolved with critical care practice over the years and is now known as the reference that successfully bridges the gap between medical and surgical intensive care practice. Unlike many critical care references, *Textbook of Critical Care* includes pediatric topics, providing a comprehensive resource for our readers who see a broad range of patients. We continue to focus on the multi-disciplinary approach to the care of critically ill patients and include contributors trained in anesthesia, surgery, pulmonary medicine, and pediatrics.

The companion online book is more interactive than ever, with 29 procedural videos and 24 e-only procedural chapters, a powerful search engine, hyperlinked references, and downloadable images. The website is mobile optimized for your convenience on all portable devices. Access to the online content is included with your book purchase, so please activate your e-book to take advantage of the full scope of information available to you.

Jean-Louis Vincent, MD, PhD
Edward Abraham, MD
Frederick A. Moore, MD, MCCM
Patrick M. Kochanek, MD, MCCM
Mitchell P. Fink, MD
CONTRIBUTORS

Basem Abdelmalak, MD
Professor of Anesthesiology
Director of Anesthesia for Bronchoscopic Surgery
Departments of General Anesthesiology and Outcomes Research
Anesthesiology Institute
Cleveland Clinic
Cleveland, Ohio

Yasir Abu-Omar, MB ChB, DPhil, FRCS
Consultant Cardiothoracic and Transplant Surgeon
Papworth Hospital
Cambridge, Great Britain

Felice Achilli, MD
Chief of Cardiology
Cardiothoracic Department
San Gerardo University Hospital
Monza, Italy

Hernán Aguirre-Bermeo, MD
Intensive Care Department
Hospital Sant Pau
Barcelona, Spain

Ayub Akbari, MD, MSc
Associate Professor
Department of Medicine
University of Ottawa
Senior Clinical Investigator
Clinical Epidemiology Program
Ottawa Hospital Research Institute
Ottawa, Ontario, Canada

Louis H. Alarcon, MD, FACS, FCCM
Associate Professor of Surgery and Critical Care Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

F. Luke Aldo, DO
Department of Anesthesiology
Hartford Hospital
Hartford, Connecticut

Ali Al-Khafaji, MD, MPH, FACP, FCCP
Associate Professor
Department of Critical Care Medicine
Director
Transplant Intensive Care Unit
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Roland Amathieu, MD, PhD
Associate Professor
Critical Care Medicine and Anesthesiology
Henri Mondor Hospital - AP-HP
Associate Professor
UPEC - School of Medicine
Créteil, France

John Leo Anderson-Dam, MD
Assistant Clinical Professor
Department of Anesthesiology and Perioperative Medicine
University of California Los Angeles
Los Angeles, California

Rajesh K. Aneja, MD
Associate Professor
Department of Pediatrics and Critical Care Medicine
University of Pittsburgh School of Medicine
Medical Director
Pediatric Intensive Care Unit
Children's Hospital of Pittsburgh of UPMC
Pittsburgh, Pennsylvania

Massimo Antonelli, MD
Professor of Intensive Care and Anesthesiology
Department of Anesthesiology and Intensive Care
Agostino Gemelli University Hospital
Rome, Italy

Zarah D. Antongiorgi, MD
Assistant Clinical Professor
Department of Anesthesiology and Perioperative Medicine
Division of Critical Care
David Geffen School of Medicine at UCLA
Los Angeles, California

Anastasia Antoniadou, MD, PhD
Associate Professor of Internal Medicine and Infectious Diseases
University General Hospital ATTIKON
National and Kapodistrian University of Athens Medical School
Athens, Greece

Anupam Anupam, MBBS
Attending Physician
Department of Medicine
Advocate Illinois Masonic Medical Center
Chicago, Illinois
Lorenzo Appendini, ASLCn
Presidio Ospedaliero di Saluzzo
Saluzzo (Cuneo), Italy

Andrew C. Argent, MBCh, MMed(Paediatrics), MD (Paediatrics), DCH(SA), FCPaeds(SA)
Professor
School of Child and Adolescent Health
University of Cape Town
Medical Director
Paediatric Intensive Care
Red Cross War Memorial Children's Hospital
Cape Town, South Africa

John H. Arnold, MD
Professor of Anaesthesia (Paediatrics)
Harvard Medical School
Senior Associate
Department of Anesthesia and Critical Care
Medical Director
Respiratory Care/ECMO
Children's Hospital
Boston, Massachusetts

Stephen Ashwal, MD
Distinguished Professor of Pediatrics and Neurology
Chief
Division of Pediatric Neurology
Department of Pediatrics
Loma Linda University School of Medicine
Loma Linda, California

Mark E. Astiz, MD
Professor of Medicine
Hofstra Northwell School of Medicine
Chairman
Department of Medicine
Lenox Hill Hospital
New York, New York

Arnold S. Baas, MD, FACC, FACP
Associate Clinical Professor of Medicine
University of California Los Angeles
David Geffen School of Medicine at UCLA
Los Angeles, California

Marie R. Baldisseri, MD, MPH, FCCM
Professor of Critical Care Medicine
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Zsolt J. Balogh, MD, PhD, FRACS, FACS
Professor of Traumatology
Department of Traumatology
John Hunter Hospital and University of Newcastle
Newcastle, New South Wales, Australia

Arna Banerjee MD, FCCM
Associate Professor of Anesthesiology/Critical Care
Associate Professor of Surgery
Medical Education and Administration
Assistant Dean for Simulation in Medical Education
Vanderbilt University Medical Center
Nashville, Tennessee

Shweta Bansal, MBBS, MD, FASN
Professor of Medicine
Division of Nephrology
University of Texas Health Sciences Center at San Antonio
San Antonio, Texas

Kaysie Banton, MD
Assistant Professor of Surgery
University of Minnesota
Minneapolis, Minnesota

Philip S. Barie, MD, MBA, FIDSA, FACS, FCCM
Professor of Surgery and Public Health
Weill Cornell Medicine of Cornell University
New York, New York

Igor Barjaktarevic, MD, MSc
Assistant Professor of Medicine
Division of Pulmonary and Critical Care
David Geffen School of Medicine at UCLA
Los Angeles, California

Barbara L. Bass, MD
John F., Jr., and Carolyn Bookout Presidential Distinguished Chair
Department of Surgery
Professor of Surgery
Houston Methodist Hospital
Houston, Texas
Professor of Surgery
Weill Cornell Medicine of Cornell University
New York, New York

Gianluigi Li Bassi, MD, PhD
Department of Pulmonary and Critical Care Medicine
Hospital Clinic Calle Villarroel
Barcelona, Spain

Sarice L. Bassin, MD
Medical Director, Stroke Program
PeaceHealth Southwest Medical Center
Vancouver, Washington

Julie A. Bastarache, MD
Assistant Professor of Medicine
Division of Allergy, Pulmonary, and Critical Care Medicine
Vanderbilt University School of Medicine
Nashville, Tennessee
Daniel G. Bausch, MD, MPH
Professor
Department of Tropical Medicine
Tulane School of Public Health and Tropical Medicine
Clinical Associate Professor
Department of Medicine
Section of Adult Infectious Diseases
Tulane Medical Center
New Orleans, Louisiana

Adriana Bermeo-Ovalle, MD
Assistant Professor
Department of Neurological Sciences
Rush University Medical Center
Chicago, Illinois

Gordon R. Bernard, BS, MD
Professor of Medicine
Department of Medicine
Vanderbilt University School of Medicine
Nashville, Tennessee

Cherisse D. Berry, MD
Clinical Instructor
Department of Surgery
University of Maryland School of Medicine
Baltimore, Maryland

Beth Y. Besecker, MD
Assistant Professor of Medicine
Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
The Ohio State University Wexner Medical Center
Columbus, Ohio

Joost Bierens, MD
Professor of Emergency Medicine
VU University Medical Centre
Amsterdam, The Netherlands

Walter L. Biffl, MD
Associate Director of Surgery
Denver Health Medical Center
Denver, Colorado
Professor of Surgery
University of Colorado
Aurora, Colorado

Thomas M. Beaver, MD, MPH
Professor of Surgery
Chief
Division of Thoracic and Cardiovascular Surgery
University of Florida College of Medicine
Gainesville, Florida

Gregory Beilman, MD
Deputy Chair
Department of Surgery
Director of System Critical Care Program
University of Minnesota Health System
Minneapolis, Minnesota

Michael J. Bell, MD
Associate Professor
Departments of Critical Care Medicine, Neurological Surgery, and Pediatrics
University of Pittsburgh School of Medicine
Associate Director
Safar Center for Resuscitation Research
Pittsburgh, Pennsylvania

Giuseppe Bello, MD
Department of Anesthesia and Intensive Care
Agostino Gemelli University Hospital
Università Cattolica del Sacro Cuore
Rome, Italy

Peyman Benharash, MD
Assistant Professor of Bioengineering
Division of Cardiothoracic Surgery
University of California Los Angeles
David Geffen School of Medicine at UCLA
Los Angeles, California

Daniel G. Bausch, MD, MPH
Professor
Department of Tropical Medicine
Tulane School of Public Health and Tropical Medicine
Clinical Associate Professor
Department of Medicine
Section of Adult Infectious Diseases
Tulane Medical Center
New Orleans, Louisiana

Yanick Beaulieu, MD, FCRPC
Cardiologue-Échocardiographiste/Intensiviste
Hôpital du Sacré-Coeur de Montréal
Professeur Adjoint de Clinique
Université de Montréal
Montréal, Québec, Canada

Thomas M. Beaver, MD, MPH
Professor of Surgery
Chief
Division of Thoracic and Cardiovascular Surgery
University of Florida College of Medicine
Gainesville, Florida

Gregory Beilman, MD
Deputy Chair
Department of Surgery
Director of System Critical Care Program
University of Minnesota Health System
Minneapolis, Minnesota

Michael J. Bell, MD
Associate Professor
Departments of Critical Care Medicine, Neurological Surgery, and Pediatrics
University of Pittsburgh School of Medicine
Associate Director
Safar Center for Resuscitation Research
Pittsburgh, Pennsylvania

Giuseppe Bello, MD
Department of Anesthesia and Intensive Care
Agostino Gemelli University Hospital
Università Cattolica del Sacro Cuore
Rome, Italy

Peyman Benharash, MD
Assistant Professor of Bioengineering
Division of Cardiothoracic Surgery
University of California Los Angeles
David Geffen School of Medicine at UCLA
Los Angeles, California
Karen C. Bloch, MD, MPH, FIDSA, FACP
Associate Professor
Departments of Medicine (Infectious Diseases) and Health Policy
Vanderbilt University Medical Center
Nashville, Tennessee

Desmond Bohn, MD
Professor of Pediatrics and Anesthesiology
University of Toronto
Toronto, Ontario

David Boldt, MD, MS
Assistant Clinical Professor, Critical Care Medicine
Chief, Trauma Anesthesiology
University of California Los Angeles
David Geffen School of Medicine at UCLA
Los Angeles, California

Geoffrey J. Bond, MD
Assistant Professor in Transplant Surgery
Thomas E. Starzl Transplantation Institute
University of Pittsburgh School of Medicine
Transplant Director
Pediatric Intestinal Care Center
Children's Hospital of Pittsburgh of UPMC
Pittsburgh, Pennsylvania

Michael J. Bradshaw, MD
Resident Physician
Department of Neurology
Vanderbilt University School of Medicine
Nashville, Tennessee

Luca Brazzi, MD
Associate Professor
Department of Anesthesia and Intensive Care Medicine
S. Giovanni Battista Molinette Hospital
University of Turin
Turin, Italy

Serge Brimioulle, MD, PhD
Professor of Intensive Care
Department of Intensive Care
Erasme Hospital
Université Libre de Bruxelles
Brussels, Belgium

Itzhak Brook, MD
Professor of Pediatrics
Georgetown University School of Medicine
Washington, DC

Richard C. Brundage, PharmD, PhD, FISoP
Distinguished University Teaching Professor
Professor of Experimental and Clinical Pharmacology
University of Minnesota College of Pharmacy
Minneapolis, Minnesota

Sara T. Burgardt, MD, PharmD
Subspecialty Fellow
Adult Nephrology
Department of Medicine
Division of Nephrology
University of North Carolina
Chapel Hill, North Carolina

Sherilyn Gordon Burroughs, MD
Associate Professor of Surgery
Weill Cornell Medicine of Cornell University
Houston Methodist Hospital
Sherrie and Alan Conover Center for Liver Disease and Transplantation
Houston, Texas

Clifton W. Callaway, MD, PhD
Professor of Emergency Medicine
Executive Vice-Chairman of Emergency Medicine
Ronald D. Stewart Endowed Chair of Emergency Medicine Research
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Peter M.A. Calverley, MB ChB, MD
Professor of Respiratory Medicine
Respiratory Research Department
University of Liverpool
Liverpool, Great Britain

John Camm, QHP, MD, BSc, FMedSci, FRCP, FRCP(E), FRCP(G), FACC, FESC, FAHA, FHRS, CStJ
Professor of Clinical Cardiology
Clinical Academic Group
Cardiovascular and Cell Sciences Research Institute
St. George's University of London
London, Great Britain

Andre Campbell, MD
Professor of Surgery
School of Medicine
University of California San Francisco
San Francisco, California

Diane M. Cappelletty, RPh, PharmD
Associate Professor of Clinical Pharmacy
Chair
Department of Pharmacy Practice
Co-Director
The Infectious Disease Research Laboratory
University of Toledo College of Pharmacy and Pharmaceutical Sciences
Toledo, Ohio

Joseph A. Carcillo, MD
Associate Professor
Departments of Critical Care Medicine and Pediatrics
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
Edward D. Chan, MD
Staff Physician
Pulmonary Section
Denver Veterans Affairs Medical Center
National Jewish Health
Denver, Colorado

Satish Chandrashekaran, MD
Assistant Professor of Medicine
Division of Pulmonary, Critical Care, and Sleep Medicine
Lung Transplantation Program
University of Florida College of Medicine
Gainesville, Florida

Lakhmir S. Chawla, MD
Associate Professor of Medicine
George Washington University Medical Center
Washington, DC

Amit Chopra, MD
Assistant Professor of Medicine
Division of Pulmonary and Critical Care Medicine
Albany Medical College
Albany, New York

Robert S.B. Clark, MD
Professor of Critical Care Medicine
Chief
Pediatric Critical Care Medicine
University of Pittsburgh School of Medicine
Associate Director
Safar Center for Resuscitation Research
Pittsburgh, Pennsylvania

Jonathan D. Cohen, MD, PhD
Robert Bendheim and Lynn Bendheim Thoman Professor in Neuroscience
Professor of Psychology
Princeton University
Co-Director Princeton Neuroscience Institute
Princeton, New Jersey

Stephen M. Cohn, MD, FACS
Witten B. Russ Professor of Surgery
University of Texas Health Science Center
San Antonio, Texas

Kelli A. Cole, PharmD, BCPS
Antibiotic Steward Pharmacist
Department of Pharmacy Services
University of Toledo Medical Center
Toledo, Ohio

Staci Collins, RD, CNCS
Senior Dietitian
Department of Food and Nutrition Services
UC Davis Children's Hospital
Sacramento, California

Gulnur Com, MD
Associate Professor of Clinical Pediatrics
University of Southern California Keck School of Medicine
Los Angeles, California

Chris C. Cook, MD
Assistant Professor of Cardiothoracic Surgery
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Robert N. Cooney, MD, FACS, FCCM
Professor and Chairman
Department of Surgery
SUNY Upstate Medical University
Syracuse, New York

Susan J. Corbridge, PhD, APN
Clinical Associate Professor
College of Nursing and Department of Medicine
Director of Graduate Clinical Studies
College of Nursing
University of Illinois at Chicago
Chicago, Illinois

Thomas C. Corbridge, MD
Professor of Medicine
Division of Pulmonary and Critical Care Medicine
Department of Medicine
Northwestern University Feinberg School of Medicine
Chicago, Illinois

Oliver A. Cornely, MD
Professor of Internal Medicine
Director of Translational Research
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)
Director
Clinical Trials Center Cologne (CTCC)
University of Cologne
Cologne, Germany

Marie L. Crandall, MD, MPH
Professor of Surgery
University of Florida College of Medicine
Jacksonville, Florida

Andrei Čretnik, MD, PhD
Professor of Traumatology
University Clinical Center Maribor
Maribor, Slovenia
David Crippen, MD, FCCM
Professor of Critical Care Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania

Jeffrey Dellavolpe, MD, MPH
Critical Care Medicine
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Chasen Ashley Croft, MD
Assistant Professor of Surgery
Department of Surgery
University of Florida Health Science Center
Gainesville, Florida

Anne Marie G.A. De Smet, MD, PhD
Anesthesiologist-Intensivist
Afdelingsohoofd Intensive Care Volwassenen
Head of Department of Critical Care
University Medical Center Groningen
Groningen, The Netherlands

Elliott D. Crouser, MD
Professor of Medicine
Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
The Ohio State University Wexner Medical Center
Columbus, Ohio

Anahat Dhillon, MD
Associate Professor
Department of Anesthesiology and Perioperative Medicine
University of California Los Angeles
Los Angeles, California

Burke A. Cunha, MD, MACP
Chief
Infectious Disease Division
Winthrop-University Hospital
Mineola, New York
Professor of Medicine
State University of New York School of Medicine
Stony Brook, New York

Rajeev Dhupar, MD
Resident
Division of General Surgery
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Cheston B. Cunha, MD
Assistant Professor of Medicine
Division of Infectious Disease
Medical Director
Antimicrobial Stewardship Program
The Warren Alpert Medical School of Brown University
Providence, Rhode Island

Rochelle A. Dicker, MD
Professor
Departments of Surgery and Anesthesia
University of California San Francisco
San Francisco, California

J. Randall Curtis, MD, MPH
Professor of Medicine
Division of Pulmonary and Critical Care Medicine
University of Washington School of Medicine
Seattle, Washington

Francesca Di Muzio, MD
Department of Anesthesiology and Intensive Care
Agostino Gemelli University Hospital
Università Cattolica del Sacro Cuore
Rome, Italy

Heidi J. Dalton, MD
Professor of Child Health
University of Arizona College of Medicine
Phoenix, Arizona

Michael N. Diringer, MD
Professor of Neurology and Neurosurgery
Associate Professor of Anesthesiology and Occupational Therapy
Washington University School of Medicine in St. Louis
St. Louis, Missouri

Joseph M. Darby, MD
Professor of Critical Care Medicine and Surgery
University of Pittsburgh School of Medicine
Medical Director
Trauma ICU
UPMC-Presbyterian Hospital
Pittsburgh, Pennsylvania

Conrad F. Diven, MD, MS
Assistant Trauma Director
Trauma Research Director
Abrazo West Campus Trauma Center
Goodyear, Arizona

Michael Donahoe, MD
Professor of Medicine
Division of Pulmonary, Allergy, and Critical Care Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Peter Doelken, MD
Associate Professor of Medicine
Division of Pulmonary and Critical Care Medicine
Albany Medical College
Albany, New York

Downloaded from ClinicalKey.com at UCSI University January 11, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.
Caron L. Boyd Dover, MD
Chief
Cardiothoracic Imaging
Medical Director of CT
Assistant Professor of Radiology
Department of Radiology
Wake Forest School of Medicine
Winston Salem, North Carolina

Shane W. English, MD, MSc, FRCPC
Associate Scientist
Clinical Epidemiology Program
Ottawa Hospital Research Institute
Assistant Professor of Medicine (Critical Care)
University of Ottawa
Intensivist
Department of Critical Care
The Ottawa Hospital
Ottawa, Ontario, Canada

Brian K. Eble, MD
Associate Professor of Pediatrics
University of Arkansas for Medical Sciences
Little Rock, Arkansas

Brent Ershoff, MD
Clinical Instructor
Department of Anesthesiology and Perioperative Medicine
David Geffen School of Medicine at UCLA
Los Angeles, California

Charles L. Edelstein, MD, PhD, FAHA
Professor of Medicine
Division of Renal Diseases and Hypertension
University of Colorado Denver
Aurora, Colorado

Joel H. Ettinger, BS, MHA
President
Category One Inc.
Pittsburgh, Pennsylvania

Randolph Edwards, MD
Assistant Professor of Surgery
University of Connecticut School of Medicine
Surgical Critical Care
Department of Surgery
Hartford Hospital
Hartford, Connecticut

Josh Ettinger, MBA
Category One, Inc.
Pittsburgh, Pennsylvania

Elwaled A. Elhassan, MBBS, FACP, FASN
Assistant Professor of Medicine (Nephrology)
Wayne State University School of Medicine
Detroit, Michigan

David C. Evans, MD
Assistant Professor of Surgery
Department of Surgery
The Ohio State University
Columbus, Ohio

E. Wesley Ely, MD, MPH
Professor of Medicine
Department of Allergy, Pulmonary, and Critical Care Medicine
Vanderbilt University Medical Center
Nashville, Tennessee

Gregory T. Everson, MD
Professor of Medicine
Division of Gastroenterology and Hepatology
University of Colorado Denver
Director of Hepatology
Hepatology and Transplant Center
University of Colorado Hospital
Aurora, Colorado

Lillian L. Emlet, MD, MS, FACEP, FCCM
Assistant Professor
Departments of Critical Care Medicine and Emergency Medicine
Associate Program Director
IM-CCM Fellowship of the MCCTP
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Chiara Faggiano, MD
Department of Anesthesia and Critical Care Medicine
S. Giovanni Battista Mollinette Hospital
University of Turin
Turin, Italy

Amir Emtiazjoo, MD, MSc
Assistant Professor of Medicine
Division of Pulmonary, Critical Care, and Sleep Medicine
Lung Transplantation Program
University of Florida College of Medicine
Gainesville, Florida

Jeff Fair, MD
Professor
Department of Surgery
University of Texas Medical Branch
Galveston, Texas

Ronald J. Falk, MD
Allen Brewster Distinguished Professor of Medicine
Director
UNC Kidney Center
Chairman
Department of Medicine
University of North Carolina
Chapel Hill, North Carolina
CONTRIBUTORS

Brenna Farmer, MD
Assistant Professor of Medicine
Department of Emergency Medicine
Weill Cornell Medicine of Cornell University
Assistant Residency Director
Department of Emergency Medicine
New York Presbyterian Hospital
New York, New York

Rory Farnan, MB, BCh, BAO
Division of Cardiology
Cooper University Hospital
Camden, New Jersey

Alan P. Farwell, MD
Associate Professor of Medicine
Chair
Division of Endocrinology, Diabetes, and Nutrition
Boston University School of Medicine
Director
Endocrine Clinics
Boston Medical Center
Boston, Massachusetts

Carinda Feild, PharmD, FCCM
Assistant Dean and Associate Professor
Department of Pharmacotherapy and Translational Research
University of Florida College of Pharmacy
Seminole, Florida

David Feller-Kopman, MD, FACP
Associate Professor of Medicine, Otolaryngology - Head and Neck Surgery
Department of Pulmonary and Critical Care Medicine
The Johns Hopkins University
Director
Bronchoscopy and Interventional Pulmonology
Johns Hopkins University Medical Institutions
Baltimore, Maryland

Kathryn Felmet, MD
Assistant Professor
Departments of Critical Care Medicine and Pediatrics
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Miguel Ferrer, MD, PhD
Department of Pneumology
Respiratory Institute
Hospital Clinic
IDIBAPS
CibeRes
Associate Professor
Department of Medicine
University of Barcelona
Barcelona, Spain

Ericka L. Fink, MD, MS
Associate Professor of Critical Care Medicine
University of Pittsburgh School of Medicine
Children's Hospital of Pittsburgh of UPMC
Associate Director
Safar Center for Resuscitation Research
Pittsburgh, Pennsylvania

Mitchell P. Fink, MD†
Professor of Surgery and Anesthesiology
Vice Chair for Critical Care
Department of Surgery
David Geffen School of Medicine at UCLA
Los Angeles, California

Brett E. Fortune, MD
Assistant Professor of Medicine (Digestive Diseases) and of Surgery (Transplant)
Associate Program Director
Gastroenterology Fellowship
Yale School of Medicine
New Haven, Connecticut

Barry I. Freedman, MD
Professor and Chief
Department of Internal Medicine
Section on Nephrology
Wake Forest School of Medicine
Winston-Salem, North Carolina

Elchanan Fried, MD
Senior Physician
Department of Medicine
Hadassah Medical Centers
Jerusalem, Israel

Kwame Frimpong, MD
Clinical Research Coordinator
Vanderbilt University Medical Center
Nashville, Tennessee

Rajeev K. Garg, MD, MS
Assistant Professor of Neurological Sciences and Neurosurgery
Rush University Medical Center
Chicago, Illinois

Raul J. Gazmuri, MD, PhD, FCCM
Professor of Medicine
Professor of Physiology and Biophysics
Director
Resuscitation Institute
Rosalind Franklin University of Medicine and Science
Director of Critical Care Medicine
Captain James A. Lovell Federal Health Care Center
North Chicago, Illinois

†Deceased.
Robert H. Geelkerken, Prof Dr
Medisch Spectrum Twente
and Faculty of Science and Technology and Experimental Center of Technical Medicine
University of Twente
Enschede, The Netherlands

Diana J. Goodman, MD
Assistant Professor
Department of Neurological Sciences
Rush University Medical Center
Chicago, Illinois

Shankar Gopinath, MD
Associate Professor of Neurosurgery
Baylor College of Medicine
Houston, Texas

John Gorcsan, III, MD
Professor of Medicine
Division of Cardiology
University of Pittsburgh
Pittsburgh, Pennsylvania

Yaacov Gozal, MD
Associate Professor of Anesthesiology
Chair
Department of Anesthesiology, Perioperative Medicine and Pain Treatment
Shaare Zedek Medical Center
Jerusalem, Israel

Jeremy D. Gradon, MD, FACP, FIDSA
Attending Physician
Department of Medicine
Division of Nephrology
Virginia Commonwealth University School of Medicine
Richmond, Virginia

M. Patricia George, MD
Assistant Professor of Medicine
University of Pittsburgh School of Medicine
UPMC Montefiore Hospital
Pittsburgh, Pennsylvania

Helen Giamarello, MD, PhD
Professor of Internal Medicine and Infectious Diseases
Hygeia Hospital
Athens, Greece

Fredric Ginsberg, MD
Associate Professor of Medicine
Division of Cardiovascular Disease
Cooper Medical School of Rowan University
Camden, New Jersey

Thomas G. Gleason, MD
Ronald V. Pellegrini Endowed Professor of Cardiothoracic Surgery
University of Pittsburgh School of Medicine
Chief
Division of Cardiac Surgery
Heart and Vascular Institute
Director
Center for Thoracic Aortic Disease
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Corbin E. Goerlich, MD
The University of Texas Medical School at Houston
Houston, Texas

Herwig Gerlach, MD, PhD, MBA
Professor and Chairman
Department of Anesthesia, Intensive Care, and Pain Management
Vivantes-Klinikum Neukölln
Berlin, Germany

Cornelia R. Graves, MD
Assistant Professor of Medicine
University of Pittsburgh School of Medicine
UPMC Montefiore Hospital
Pittsburgh, Pennsylvania

Herwig Gerlach, MD, PhD, MBA
Professor and Chairman
Department of Anesthesia, Intensive Care, and Pain Management
Vivantes-Klinikum Neukölln
Berlin, Germany

Helen Giamarello, MD, PhD
Professor of Internal Medicine and Infectious Diseases
Hygeia Hospital
Athens, Greece

Fredric Ginsberg, MD
Associate Professor of Medicine
Division of Cardiovascular Disease
Cooper Medical School of Rowan University
Camden, New Jersey

Thomas G. Gleason, MD
Ronald V. Pellegrini Endowed Professor of Cardiothoracic Surgery
University of Pittsburgh School of Medicine
Chief
Division of Cardiac Surgery
Heart and Vascular Institute
Director
Center for Thoracic Aortic Disease
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Corbin E. Goerlich, MD
The University of Texas Medical School at Houston
Houston, Texas

Cesare Gregoretti, MD
Department of Biopathology and Medical Biotechnologies (DIBIMED)
Section of Anesthesia, Analgesia, Intensive Care, and Emergency
Policlinico P. Giaccone University of Palermo
Palermo, Italy

Andreas Greinacher, MD
Institute for Immunology and Transfusion Medicine
University Medicine Greifswald
Department of Anesthesiology and Intensive Care Medicine
Greifswald, Germany
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael A. Gropper, MD, PhD</td>
<td>Professor and Chair, Department of Anesthesia and Perioperative Care, University of California, San Francisco, California</td>
</tr>
<tr>
<td>Paul O. Gubbins, PharmD</td>
<td>Associate Dean, Vice Chair and Professor, Division of Pharmacy Practice and Administration, UMKC School of Pharmacy at Missouri State University, Springfield, Missouri</td>
</tr>
<tr>
<td>Vadim Gudzenko, MD</td>
<td>Assistant Clinical Professor, Departments of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California</td>
</tr>
<tr>
<td>Kyle J. Gunnerson, MD</td>
<td>Associate Professor of Emergency Medicine, Chief, Division of Emergency Critical Care, University of Michigan Medical School, Ann Arbor, Michigan</td>
</tr>
<tr>
<td>Fahim A. Habib, MD, MPH, FACS</td>
<td>Assistant Professor of Surgery, DeWitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Director, Department of Critical Care, University of Miami Hospital, Attending Trauma Surgeon, Ryder Trauma Center, Jackson Memorial Hospital, Miami, Florida</td>
</tr>
<tr>
<td>Brian G. Harbrecht, MD</td>
<td>Professor of Surgery, University of Louisville School of Medicine, Louisville, Kentucky</td>
</tr>
<tr>
<td>Yenal I.J. Harper, MD, ABIM</td>
<td>Cardiovascular Disease Fellow, University of Tennessee Health Science Center, Memphis, Tennessee</td>
</tr>
<tr>
<td>Moustafa Hassan, MD</td>
<td>Associate Professor, Departments of Surgery and Anesthesiology, State University of New York, SUNY Upstate Medical University, Syracuse, New York</td>
</tr>
<tr>
<td>Jan A. Hazelzet, MD, PhD</td>
<td>Professor in Healthcare Quality and Outcome, Chief Medical Information Officer, Vice Director, Strategy and Policy IT, Erasmus Medical Center, Rotterdam, The Netherlands</td>
</tr>
<tr>
<td>Jonathan R. Hiatt, MD</td>
<td>Professor of Surgery, Vice Dean for Faculty, David Geffen School of Medicine at UCLA, Los Angeles, California</td>
</tr>
<tr>
<td>Robert W. Hickey, MD FAAP, FAHA</td>
<td>Associate Professor of Pediatrics, University of Pittsburgh School of Medicine, Department of Emergency Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>Thomas L. Higgins, MD, MBA</td>
<td>Professor, Departments of Medicine, Anesthesia, and Surgery, Chief Medical Officer, Baystate Franklin Medical Center and BH Northern Region, Baystate Noble Hospital and BH Western Region, Westfield, Massachusetts</td>
</tr>
<tr>
<td>Nicholas S. Hill, MD, FPVRI</td>
<td>Professor of Medicine, Chief, Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts University Medical Center, Boston, Massachusetts</td>
</tr>
<tr>
<td>Swapnil Hiremath, MD, MPH</td>
<td>Assistant Professor, Department of Medicine, University of Ottawa, Senior Clinical Investigator, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada</td>
</tr>
<tr>
<td>Gerald A. Hladik, MD</td>
<td>Doc J Thurston Distinguished Professor of Medicine, Interim Chief, Division of Nephrology and Hypertension, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina</td>
</tr>
<tr>
<td>Steven M. Hollenberg, MD</td>
<td>Professor of Medicine, Cooper Medical School of Rowan University, Director, Coronary Care Unit, Cooper University Hospital, Camden, New Jersey</td>
</tr>
<tr>
<td>Eric Hoste, MD, PhD</td>
<td>Associate Professor, Department of Intensive Care Medicine, Ghent University Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium, Senior Clinical Investigator, Research Fund-Flanders (FWO), Brussels, Belgium</td>
</tr>
</tbody>
</table>
Albert T. Hsu, MD
Assistant Professor of Surgery
University of Florida College of Medicine
Jacksonville, Florida

Ashutosh P. Jadhav, MD, PhD
Assistant Professor
Departments of Neurology and Neurological Surgery
University of Pittsburgh
Pittsburgh, Pennsylvania

David T. Huang, MD, MPH
Associate Professor
Departments of Critical Care Medicine and Emergency Medicine Director
Multidisciplinary Acute Care Research Organization
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

David Jiménez, MD, PhD
Associate Professor of Medicine (Respiratory Medicine)
Alcalá de Henares University
Chief, Venous Thromboembolism Programme
Hospital Ramón y Cajal
Madrid, Spain

J. Terrill Huggins, MD
Associate Professor of Medicine
Pulmonary, Critical Care, Allergy, and Sleep Medicine
Medical University of South Carolina
Charleston, South Carolina

Jimmy Johannes, MD
Fellow, Department of Pulmonary and Critical Care Medicine
David Geffen School of Medicine at UCLA
Los Angeles, California

Janeen Rene Jordan, MD
Department of Surgery
University of Florida
Gainesville, Florida

Philippe G. Jorens, MD, PhD
Professor and Chair
Department of Critical Care Medicine
Professor of Clinical Pharmacology and Toxicology
University of Antwerp and Antwerp University Hospital
Antwerp, Belgium

Mathieu Jozwiak, MD
Medical Intensive Care Unit
Bicêtre University Hospital
Paris-South University
Le Kremlin-Bicêtre, France

Rose Jung, PharmD, MPH, BCPS
Clinical Associate Professor
Department of Pharmacy Practice
University of Toledo College of Pharmacy and Pharmaceutical Sciences
Toledo, Ohio

Aanchal Kapoor, MD
Associate Program Director
Department of Critical Care Medicine
Cleveland Clinic
Cleveland, Ohio

David C. Kaufman, MD, FCCM
Professor of Surgery, Anesthesia, Internal Medicine, Medical Humanities and Bioethics, and Urology
University of Rochester
Rochester, New York

A. Murat Kaynar, MD, MPH
Associate Professor
Departments of Critical Care Medicine and Anesthesiology
University of Pittsburgh School of Medicine
The Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center
Pittsburgh, Pennsylvania
CONTRIBUTORS

John A. Kellum, MD
Professor of Critical Care Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania

Orlando Kirton, MD
Ludwig J. Pyrtek, MD, Chair of Surgery
Department of Surgery
Hartford Hospital
Hartford, Connecticut
Professor and Vice Chairman
Department of Surgery
University of Connecticut School of Medicine
Farmington, Connecticut

Jason Knight, MD
Emergency Department Medical Director
Maricopa Medical Center
Phoenix, Arizona

Patrick M. Kochanek, MD, MCCC
Ake N. Grenvik Professor in Critical Care Medicine
Professor and Vice Chairman
Department of Critical Care Medicine
Professor of Anesthesiology, Pediatrics, Bioengineering, and Clinical and Translational Science
University of Pittsburgh School of Medicine
Director
Safar Center for Resuscitation Research
Pittsburgh, Pennsylvania

Philipp Koehler, MD
Resident Physician
Department of Internal Medicine
University Hospital Cologne
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)
Faculty of Medicine
University of Cologne
Cologne, Germany

Jeroen J. Kolkman, Prof Dr
Department of Gastroenterology
Medische Spectrum Twente
Enschede, The Netherlands
Department of Gastroenterology
University Medical Center Groningen
Groningen, The Netherlands

Marin H. Kollef, MD
Division of Pulmonary and Critical Care Medicine
Washington University School of Medicine in St. Louis
St. Louis, Missouri

Cecilia Korb, MD, MSc
Research Fellow
Department of Paediatric Intensive Care
Royal Brompton Hospital
London, United Kingdom

Robert L. Kormos, MD, FRCS(C), FAHA
Professor
Department of Surgery
University of Pittsburgh School of Medicine
Director
Artificial Heart Program
Co-Director
Heart Transplantation
Medical Director
Vital Engineering
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Lucy Z. Kornblith, MD
Fellow
Trauma and Critical Care
University of California San Francisco
San Francisco, California

Roman Košir, MD, PhD
Chief
Emergency Center
Attending Physician
Trauma Department
University Clinical Center Maribor
Maribor, Slovenia

Robert M. Kotloff, MD
Chairman
Department of Pulmonary Medicine
Respiratory Institute
Cleveland Clinic
Cleveland, Ohio

Rosemary A. Kozar, MD, PhD
Professor of Surgery
University of Maryland
Baltimore, Maryland

Wolf Benjamin Kratzert, MD, PhD
Assistant Clinical Professor
Department of Anesthesiology and Perioperative Medicine
University of California Los Angeles
Los Angeles, California

Anand Kumar, MD
Associate Professor
Sections of Critical Care Medicine and Infectious Diseases
University of Manitoba
Winnipeg, Manitoba, Canada
Associate Professor
Sections of Critical Care Medicine and Infectious Diseases
Robert Wood Johnson Medical School, UMDNJ
Camden, New Jersey
Jerrold H. Levy, MD, FAHA, FCCM
Professor of Anesthesiology
Associate Professor of Surgery
Co-Director
Cardiothoracic ICU
Anesthesiology, Critical Care, and Surgery
Duke University Hospital
Durham, North Carolina

Mitchell M. Levy, MD
Professor of Medicine
The Warren Alpert Medical School of Brown University
Chief
Division of Critical Care, Pulmonary and Sleep Medicine
Rhode Island Hospital
Providence, Rhode Island

Anthony J. Lewis, MD
General Surgery Resident
Department of Surgery
University of Pittsburgh
Pittsburgh, Pennsylvania

Catherine E. Lewis, MD
Assistant Professor of Surgery
Trauma, Emergency General Surgery, and Surgical Critical Care
David Geffen School of Medicine at UCLA
Los Angeles, California

Scott Liebman, MD, MPH
Associate Professor
Department of Medicine
University of Rochester Medical Center
Rochester, New York

Stuart L. Linas, MD
Rocky Mountain Professor of Renal Research
Department of Internal Medicine
University of Colorado School of Medicine
Aurora, Colorado
Chief of Nephrology
Denver Health Medical Center
Denver, Colorado

Jason P. Linefsky, MD, MS
Assistant Professor of Medicine
Division of Cardiology
Emory University School of Medicine
Decatur, Georgia

Kerry Michael Link, MD, MBA
Professor of Radiology
Cardiology, Regenerative Medicine, and Translational Sciences
Department of Radiology
Wake Forest School of Medicine
Winston-Salem, North Carolina

Vladimir Kvetan, MD
Director
Jay B. Langner Critical Care System Director
Division of Critical Care Medicine
Montefiore Medical Center
Albert Einstein College of Medicine
Bronx, New York

Shawn D. Larson, MD, FACS
Assistant Professor of Surgery
Division of Pediatric Surgery
University of Florida College of Medicine
Gainesville, Florida

Gilles Lebuffe, MD
Professor of Anaesthesiology and Intensive Care Medicine
Lille University School of Medicine
Lille University Hospital
Lille, France

Constance Lee, MD
Fellow
Surgical Critical Care
Department of Surgery
University of Florida College of Medicine
Gainesville, Florida

Hans J. Lee, MD
Assistant Professor of Medicine
Director of Pleural Disease Service
Fellowship Director
Kopen Wang Interventional Pulmonary Fellowship
Division of Pulmonary/Critical Care Medicine
The Johns Hopkins University
Baltimore, Maryland

Angela M. Leung, MD, MSc
Assistant Clinical Professor of Medicine
Division of Endocrinology
David Geffen School of Medicine at UCLA
VA Greater Los Angeles Healthcare System
Los Angeles, California

Allan D. Levi, MD, PhD, FACS
Chair
Department of Neurological Surgery
Professor of Neurological Surgery, Orthopedics, and Rehabilitation Medicine
University of Miami Miller School of Medicine
Chief of Neurosurgery
Jackson Memorial Hospital
Miami, Florida

Phillip D. Levin, MA, MB, BCHIR
Director
Senior Lecturer
Department of Anesthesia
Hebrew University
Director
General Intensive Care Unit
Shaare Zedek Medical Center
Jerusalem, Israel

Downloaded from ClinicalKey.com at UCSI University January 11, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.
CONTRIBUTORS

Pamela Lipsett, MD, MHPE
Warfield M. Firor Endowed Professorship
Department of Surgery
The Johns Hopkins University School of Medicine
Baltimore, Maryland

Bernhard Maisch, MD, FESC, FACC
Professor and Director
Department of Cardiology
Marburg Heart Center
Marburg, Germany

Angela K.M. Lipshutz, MD, MPH
2015-2016 Severinghaus Assistant Professor
Department of Anesthesia and Perioperative Care
University of California San Francisco
San Francisco, California

Jordi Mancebo, MD
Director
Intensive Care Department
Hospital Sant Pau
Barcelona, Spain

Henry J. Mann, PharmD, FCCM, FCCP, FASHP
Dean and Professor
The Ohio State University College of Pharmacy
Columbus, Ohio

Sanjay Manocha, MD, FRCPC
Medical Director
Division of Critical Care Medicine
Humber River Hospital
Toronto, Ontario, Canada

Andrew I.R. Maas, MD, PhD
Professor and Chair
Department of Neurosurgery
University Hospital Antwerp and University of Antwerp
Antwerp, Belgium

Henry J. Mann, PharmD, FCCM, FCCP, FASHP
Dean and Professor
The Ohio State University College of Pharmacy
Columbus, Ohio

Sanjay Manocha, MD, FRCPC
Medical Director
Division of Critical Care Medicine
Humber River Hospital
Toronto, Ontario, Canada

Andrew I.R. Maas, MD, PhD
Professor and Chair
Department of Neurosurgery
University Hospital Antwerp and University of Antwerp
Antwerp, Belgium

Sanjay Manocha, MD, FRCPC
Medical Director
Division of Critical Care Medicine
Humber River Hospital
Toronto, Ontario, Canada

Daniel R. Margulies, MD, FACS
Professor of Surgery
Director
Trauma Services and Acute Care Surgery
Associate Director, General Surgery
Cedars-Sinai Medical Center
Los Angeles, California

Paul E. Marik, MD, FCCP, FCCM
Chief
Division of Pulmonary and Critical Care Medicine
Department of Internal Medicine
Eastern Virginia Medical School
Norfolk, Virginia

Donald W. Marion, MD, MSc
Senior Clinical Consultant
Division of Clinical Affairs
The Defense and Veterans Brain Injury Center
Silver Spring, Maryland

Stefano Maggiolini, MD
Chief of Cardiology
Cardiovascular Department
ASST-Lecco
San Leopoldo Mandic Hospital Merate
Lecco, Italy

Stephanie Markle, DO, MPH
Acute Care Surgery Fellow
Clinical Instructor
University of Florida College of Medicine
Gainesville, Florida

Michael C. Madigan, MD
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Alvaro Martinez-Camacho, MD
Assistant Professor of Gastroenterology and Hepatology
University of Colorado Denver
Division of Digestive and Liver Health
Denver Health Hospital and Authority
Denver, Colorado

Amaan Mahajan, MD, PhD
Professor of Anesthesiology and Bioengineering
Chair
Department of Anesthesiology
David Geffen School of Medicine at UCLA
Los Angeles, California

Aman Mahajan, MD, PhD
Professor of Anesthesiology and Bioengineering
Chair
Department of Anesthesiology
David Geffen School of Medicine at UCLA
Los Angeles, California

Stephanie Markle, DO, MPH
Acute Care Surgery Fellow
Clinical Instructor
University of Florida College of Medicine
Gainesville, Florida

Stefano Maggiolini, MD
Chief of Cardiology
Cardiovascular Department
ASST-Lecco
San Leopoldo Mandic Hospital Merate
Lecco, Italy

Aman Mahajan, MD, PhD
Professor of Anesthesiology and Bioengineering
Chair
Department of Anesthesiology
David Geffen School of Medicine at UCLA
Los Angeles, California

Pamela Lipsett, MD, MHPE
Warfield M. Firor Endowed Professorship
Department of Surgery
The Johns Hopkins University School of Medicine
Baltimore, Maryland

Paul E. Marik, MD, FCCP, FCCM
Chief
Division of Pulmonary and Critical Care Medicine
Department of Internal Medicine
Eastern Virginia Medical School
Norfolk, Virginia

Donald W. Marion, MD, MSc
Senior Clinical Consultant
Division of Clinical Affairs
The Defense and Veterans Brain Injury Center
Silver Spring, Maryland

Aman Mahajan, MD, PhD
Professor of Anesthesiology and Bioengineering
Chair
Department of Anesthesiology
David Geffen School of Medicine at UCLA
Los Angeles, California

Aman Mahajan, MD, PhD
Professor of Anesthesiology and Bioengineering
Chair
Department of Anesthesiology
David Geffen School of Medicine at UCLA
Los Angeles, California

Downloaded from ClinicalKey.com at UCSI University January 11, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.
Florian B. Mayr, MD, MPH
Assistant Professor of Critical Care Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

George V. Mazariagos, MD
Professor of Surgery and Critical Care
University of Pittsburgh School of Medicine
Director, Pediatric Transplantation
Hillman Center for Pediatric Transplantation
Children’s Hospital of Pittsburgh of UPMC
Pittsburgh, Pennsylvania

Joanne Mazzarelli, MD, FACC
Division of Cardiovascular Disease
Women’s Heart Program
Cooper University Hospital
Assistant Professor of Medicine
Cooper Medical School of Rowan University
Camden, New Jersey

Steven A. McGloughlin, FCICM, FRACP, MPH&TM, PGDipEcho
Department of Intensive Care and Hyperbaric Medicine
The Alfred Hospital
Melbourne, Australia

Lauralyn McIntyre, MD, MSc
Senior Scientist
Clinical Epidemiology Program
Ottawa Hospital Research Institute
Associate Professor of Medicine (Critical Care)
University of Ottawa
Intensivist
Department of Critical Care
The Ottawa Hospital
Ottawa, Ontario, Canada

Anna W. McLean, MD
Department of Internal Medicine
George Washington University School of Medicine
VA Medical Center
Washington, DC

John F. McNamara, BDSc, MDS (Adel), FICD, FADI, FPFA, MRACDS (ENDO)
Registrar—Associate Lecturer
Center for Clinical Research
University of Queensland
Brisbane, Australia

Michelle K. McNutt, MD
Assistant Professor of Surgery
University of Texas Health Science Center at Houston
Houston, Texas

Lucido L. Ponce Mejia, MD
Resident Physician
Department of Neurosurgery
Baylor College of Medicine
Houston, Texas

Daniel R. Meldrum, MD
Professor of Surgery
Michigan State University College of Human Medicine
Grand Rapids, Michigan

Joseph S. Meltzer, MD
Associate Clinical Professor
Department of Anesthesiology and Perioperative Medicine
University of California Los Angeles
David Geffen School of Medicine at UCLA
Los Angeles, California

Dieter Mesotten, MD, PhD
Associate Professor of Medicine
Division of Intensive Care Medicine
Katholieke Universiteit Leuven
Leuven, Belgium

Kimberly S. Meyer, MSN, ACNP-BC
Neurosurgery Nurse Practitioner
Trauma Institute
University of Louisville Hospital
Instructor in Nursing
University of Louisville
Louisville, Kentucky

Scott T. Micek, PharmD
Associate Professor of Pharmacy Practice
St. Louis College of Pharmacy
St. Louis, Missouri

David J. Michelson, MD
Assistant Professor
Departments of Pediatrics and Neurology
Loma Linda University Health
Loma Linda, California

Dianne Mills, RD, CNSC
Senior Dietitian
Department of Food and Nutrition Services
UC Davis Children’s Hospital
UC Davis Medical Center
Sacramento, California

Bartley Mitchell, MD
Endovascular Neurosurgeon
Baptist Medical Center
Jacksonville, Florida

Aaron M. Mittel, MD
Clinical Fellow in Anaesthesia
Department of Anesthesia, Critical Care, and Pain Medicine
Harvard Medical School
Beth Israel Deaconess Medical Center
Boston, Massachusetts

Xavier Monnet, MD, PhD
Medical Intensive Care Unit
Paris-South University
Bicêtre Hospital
Le Kremlin-Bicêtre, France
CONTRIBUTORS

John Montford, MD
Assistant Professor of Medicine
University of Colorado School of Medicine
Aurora, Colorado

Bruno Mourvillier, MD
Assistant
Medical and Infectious Diseases Intensive Care
Bichat-Claude Bernard Hospital
Paris 7 University
Paris, France

Frederick A. Moore, MD, MCCM
Professor of Surgery
Head
Acute Care Surgery
Department of Surgery
University of Florida College of Medicine
Gainesville, Florida

Ricardo Muñoz, MD, FAAP, FCCM, FACC
Professor
Departments of Critical Care Medicine, Pediatrics, and Surgery
University of Pittsburgh School of Medicine
Chief
Pediatric Cardiac Critical Care
Medical Director
Global Business and Telemedicine
Children's Hospital of Pittsburgh of UPMC
Pittsburgh, Pennsylvania

Laura J. Moore, MD
Associate Professor of Surgery
Chief of Surgical Critical Care
Department of Surgery
The University of Texas Health Science Center Houston
Medical Director
Shock Trauma Intensive Care Unit
Texas Trauma Institute
Memorial Hermann Hospital
Texas Medical Center
Houston, Texas

Kurt G. Naber, MD, PhD
Associate Professor of Urology
Technical University of Munich
Munich, Germany

Girish B. Nair, MD, FACP, FCCP
Director
Interstitial Lung Disease Program and Pulmonary Rehabilitation
Internal Medicine
Winthrop University Hospital
Mineola, New York
Assistant Professor of Clinical Medicine
Internal Medicine
SUNY Stony Brook
Stony Brook, New York

Jovany Cruz Navarro, MD
Resident Physician
Department of Anesthesiology
Baylor College of Medicine
Houston, Texas

Melissa L. New, MD
Pulmonary and Critical Care Fellow
Department of Medicine
University of Colorado Denver
Anschutz Medical Campus
Aurora, Colorado

Jennifer Nguyen-Lee, MD
Assistant Clinical Instructor
Department of Anesthesiology and Perioperative Medicine
Liver Transplant Anesthesia
David Geffen School of Medicine at UCLA
Los Angeles, California

Michael S. Niederman, MD, MACP, FCCP, FCCM, FERS
Clinical Director
Division of Pulmonary and Critical Care
New York Hospital
Weill Cornell Medicine of Cornell University
New York, New York

Lisa K. Moores, MD
Associate Dean for Student Affairs
Office of the Dean
Professor of Medicine
F. Edward Hebert School of Medicine
The Uniformed Services University of the Health Sciences
Bethesda, Maryland

Colleen M. Moran, MD
Assistant Professor
Departments of Anesthesiology and Critical Care
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Alison Morris, MD, MS
Associate Professor of Medicine and Immunology
Division of Pulmonary, Allergy, and Critical Care Medicine
Vice Chair of Clinical Research
Department of Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Thomas C. Mort, MD
Assistant Professor of Surgery
University of Connecticut School of Medicine
Farmington, Connecticut
Associate Director
Surgical Intensive Care Unit
Hartford Hospital
Hartford, Connecticut

Michele Moss, MD
Professor and Vice Chair
Department of Pediatrics
University of Arkansas for Medical Sciences
Little Rock, Arkansas

Downloaded from ClinicalKey.com at UCSI University January 11, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.
Alexander S. Niven, MD
Professor of Medicine
Uniformed Services University of the Health Sciences
Bethesda, Maryland
Director of Medical Education and DIO
Educational Resources Division
Madigan Army Medical Center
Tacoma, Washington

Joseph E. Parrillo, MD
Chairman
Heart and Vascular Hospital
Hackensack University Medical Center
Hackensack, New Jersey
Professor of Medicine
Rutgers New Jersey Medical School
Newark, New Jersey

Juan B. Ochoa, MD
Department of Surgery and Critical Care Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Rohit Pravin Patel, MD
Assistant Professor
Departments of Emergency Medicine, Anesthesiology, and Surgery
Co-Director
Emergency Medicine Critical Care Fellowship
Director of Critical Care Ultrasound
Surgical ICU
University of Florida Health Shands Hospital
Gainesville, Florida

Mauro Oddo, MD
Staff Physician
Head
Clinical Research Unit
Department of Intensive Care Medicine
Centre Hospitalier Universitaire Vaudois (CHUV) – University Hospital
Faculty of Biology Medicine
University of Lausanne
Lausanne, Switzerland

David L. Paterson, MBBS (Hons), PhD, FRACP, FRCPA, GDCE
Professor of Medicine
Centre for Clinical Research (UQCCR)
The University of Queensland
Consultant Infectious Diseases Physician
Department of Infectious Diseases
Royal Brisbane and Women's Hospital
Brisbane, Australia

Andrew B. Peitzman, MD
Distinguished Professor of Surgery
Mark M. Ravitch Professor and Vice-Chair
University of Pittsburgh Vice President for Trauma and Surgical Services
Pittsburgh, Pennsylvania

Daleen Aragon Penoyer, PhD, RN, CCRP, FCCM
Director
Center for Nursing Research and Advanced Nursing Practice
Orlando Health
Orlando, Florida

James P. Orlowski, MD
Division of Pediatric Critical Care
Community Hospital
Tampa, Florida

Daleen Aragon Penoyer, PhD, RN, CCRP, FCCM
Director
Center for Nursing Research and Advanced Nursing Practice
Orlando Health
Orlando, Florida

Catherine M. Otto, MD
J. Ward Kennedy-Hamilton Endowed Chair in Cardiology
Professor of Medicine
University of Washington School of Medicine
Seattle, Washington

Judith L. Pepe, MD
Senior Associate Director, Surgical Critical Care
Department of Surgery
Hartford Hospital
Hartford, Connecticut
Associate Professor of Surgery
University of Connecticut Medical Center
Farrington, Connecticut

Aravinda Page, MA, MB BChir, MRCS
Specialist Registrar
Cardiothoracic Surgery
Papworth Hospital NHS Foundation Trust
Cambridge, Great Britain

Steve G. Peters, MD
Affiliate Professor
Division of Pulmonary and Critical Care Medicine
Mayo Clinic
Rochester, Minnesota

Adrian Pilatz, MD, PhD
Clinic for Urology, Pediatric Urology, and Andrology
Justus-Liebig-University
Geissen, Germany
Giovanni Piovesana, MD
Fellow in Cardiotoracic Surgery
Department of Surgery
University of Florida College of Medicine
Gainesville, Florida

Fred Plum, MD†
Department of Neurology
Weill Cornell Medicine of Cornell University
New York, New York

Kees H. Polderman, MD, PhD
Professor of Critical Care Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Murray M. Pollack, MD, MBA
Professor of Pediatrics
George Washington University School of Medicine and Health Sciences
Director
Clinical Outcomes Research
Department of Critical Care
Children's National Medical Center
Washington, DC

Sebastian Pollandt, MD
Assistant Professor
Department of Neurological Sciences
Rush University Medical Center
Chicago, Illinois

Peter J. Pronovost, MD
Professor
Departments of Anesthesiology/Critical Care Medicine and Surgery
The Johns Hopkins University School of Medicine
Baltimore, Maryland

Juan Carlos Puyana, MD, FACS, FACCP
Professor of Surgery, Critical Care Medicine, and Translational Science
Director
Global Health Surgery
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Jin H. Ra, MD, FACS
Assistant Professor of Surgery
Medical Director, SICU
Program Director, SCC Fellowship
University of Florida College of Medicine
Jacksonville, Florida

Thomas G. Rainey, MD
President
Critical Medicine
Bethesda, Maryland

Davinder Ramsingh, MD
Director of Clinical Research and Perioperative Ultrasound
Associate Professor
Department of Anesthesiology
Loma Linda Medical Center
Loma Linda, California

Sarangarajan Ranganathan, MD
Professor of Pathology
University of Pittsburgh School of Medicine
Director of Anatomic Pathology
Division of Pediatric Pathology
Children's Hospital of Pittsburgh of UPMC
Pittsburgh, Pennsylvania

V. Marco Ranieri, MD
Policlinico Umberto I
Anesthesia and Critical Care Medicine
Sapienza Università di Roma
Rome, Italy

Sepehr Rejai, MD
Resident
Department of Anesthesiology and Perioperative Medicine
David Geffen School of Medicine at UCLA
Los Angeles, California

Jorge Reyes, MD
Professor of Surgery
Chief
Division of Transplant Surgery
University of Washington School of Medicine
Seattle, Washington

Joshua C. Reynolds, MD, MS
Assistant Professor
Department of Emergency Medicine
Michigan State University College of Human Medicine
Grand Rapids, Michigan

Arsen D. Ristic, MD, PhD, FESC
Associate Professor of Internal Medicine (Cardiology)
Belgrade University School of Medicine
Deputy Director
Polyclinic of the Clinical Center of Serbia
Chief
Interventional Pericardiology and Diseases of Pulmonary Circulation
Department of Cardiology
Clinical Center of Serbia
Belgrade, Serbia

Claudia S. Robertson, MD
Professor
Department of Neurosurgery
Baylor College of Medicine
Houston, Texas

Emmanuel Robin, MD, PhD
Head, Anesthesia—Cardiothoracic Intensive Care
Lille University Hospital
Lille, France

†Deceased.
Todd W. Robinson, MD
Assistant Professor
Department of Internal Medicine
Section on Nephrology
Wake Forest School of Medicine
Winston-Salem, North Carolina

Santhosh Sadasivan, MD
Senior Research Assistant
Department of Neurosurgery
Baylor College of Medicine
Houston, Texas

Howard L. Saft, MD, MSHS
Assistant Professor
Department of Medicine
David Geffen School of Medicine at UCLA
VA Greater Los Angeles Healthcare System
Los Angeles, California
National Jewish Health
Denver, Colorado

Rajan Saggar, MD
Associate Professor of Medicine
David Geffen School of Medicine at UCLA
Los Angeles, California

Manish K. Saha, MBBS
Postdoctoral Fellow
Department of Internal Medicine
Division of Nephrology
University of Alabama Birmingham
Birmingham, Alabama

Juan C. Salgado, MD
Assistant Professor of Medicine
Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine
Lung Transplantation Program
Indiana University School of Medicine
Indianapolis, Indiana

Joan Sanchez-de-Toledo, MD, PhD
Assistant Professor of Medicine
Division of Critical Care
University of Pittsburgh School of Medicine
Clinical Director
Cardiac Intensive Care Unit
Children's Hospital of Pittsburgh of UPMC
Pittsburgh, Pennsylvania

Vivek R. Sanghani, MD
Subspecialty Fellow
Adult Nephrology
Department of Medicine
Division of Nephrology
University of North Carolina
Chapel Hill, North Carolina

Cristina Santonocito, MD
Department of Anesthesia and Intensive Care
IRCSS-ISMETT-UPMC
Palermo, Italy
Penny Lynn Sappington, MD
Assistant Professor of Critical Care Medicine
University of Pittsburgh School of Medicine
Medical Director
Surgical Intensive Care Unit
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

John Sarko, MD
Clinical Attending Physician
Department of Emergency Medicine
Maricopa Medical Center
University of Arizona—Phoenix School of Medicine
Phoenix, Arizona

Richard H. Savel MD, FCCM
Associate Professor
Departments of Clinical Medicine and Neurology
Albert Einstein College of Medicine
Medical Co-Director
Surgical Intensive Care Unit
Montefiore Medical Center
New York, New York

Irina Savelieva, MD, PhD
Lecturer in Cardiology
Division of Cardiac and Vascular Sciences
St. Georges University of London
London, United Kingdom

Anton C. Schoolwerth, MD
Professor of Medicine
Dartmouth University Geisel School of Medicine
Lebanon, New Hampshire

Christopher K. Schott, MD, MS, RDMS
Assistant Professor
Department of Critical Care Medicine
Department of Emergency Medicine
Director of Critical Care Ultrasonography
VA Pittsburgh Healthcare Systems and University of Pittsburgh/UPMC
Pittsburgh, Pennsylvania

Robert W. Schrier, MD
Professor Emeritus
Department of Medicine
University of Colorado
Aurora, Colorado

Carl Schulman, MD
Director
Department of Critical Care
University of Miami Miller School of Medicine
Miami, Florida

Donna L. Seger, MD
Associate Professor of Medicine and Emergency Medicine
Vanderbilt University Medical Center
Medical Director and Executive Director
Tennessee Poison Center
Nashville, Tennessee

Sixten Selleng, MD
Senior Physician
Department of Anaesthesiology and Intensive Care
University Medicine Greifswald
Greifswald, Germany

Frank W. Sellke, MD
Karls and Karlson Professor of Surgery
Chief of Cardiothoracic Surgery
The Warren Alpert Medical School of Brown University
Providence, Rhode Island

Kinjal N. Sethuraman, MD, MPH
Assistant Professor
Department of Emergency Medicine
University of Maryland School of Medicine
Baltimore, Maryland

Robert L. Sheridan, MD
Medical Director, Burn Service
Shriners Hospital for Children
Boston, Massachusetts

Ariel L. Shiloh, MD
Assistant Professor
Department of Clinical Medicine and Neurology
Director
Critical Care Medicine Consult Service
Albert Einstein College of Medicine
Montefiore Medical Center
New York, New York

Pierre Singer, MD
Department of General Intensive Care
Rabin Medical Center
Petah Tikva and the Sackler School of Medicine
Tel Aviv, Israel

Sumit P. Singh, MBBS, MD
Assistant Professor of Anesthesiology and Intensive Care
David Geffen School of Medicine at UCLA
VA Greater Los Angeles
Los Angeles, California

Anthony D. Slonim, MD, DrPH
Professor of Medicine and Pediatrics
University of Nevada School of Medicine
President and CEO
Renown Health
Reno, Nevada
Neel R. Sodha, MD
Assistant Professor of Surgery
Division of Cardiothoracic Surgery
Director
Lifespan Thoracic Aortic Center
The Warren Alpert Medical School of Brown University
Providence, Rhode Island

Jean-Louis Teboul, MD, PhD
Professor of Medicine
Medical Intensive Care Unit
Paris-South University
Bicêtre University Hospital
Le Kremlin-Bicêtre, France

Isaac Teitelbaum, MD
Professor of Medicine
University of Colorado School of Medicine
Aurora, Colorado

Pierpaolo Terragni, MD
Associate Professor
Department of Surgical Sciences
University of Sassari
Sassari, Italy

Stephen R. Thom, MD, PhD
Professor
Department of Emergency Medicine
University of Maryland School of Medicine
Baltimore, Maryland

Elizabeth Thomas, DO
Assistant Professor
Department of Surgery
University of Florida
Gainesville, Florida

Jean-Francois Timsit, MD, PhD
Decision Sciences in Infectious Disease Prevention
Paris Diderot University
Paris, France

Samuel A. Tisherman, MD, FACS, FCCM
Professor
Department of Surgery
R. A. Cowley Shock Trauma Center
University of Maryland School of Medicine
Baltimore, Maryland

S. Robert Todd, MD, FACS, FCCM
Associate Professor of Surgery
Baylor College of Medicine
Chief
General Surgery and Trauma
Ben Taub Hospital
Houston, Texas

Ashita J. Tolwani, MD, MSc
Professor of Medicine
Department of Medicine
Division of Nephrology
University of Alabama at Birmingham
Birmingham, Alabama
Antoni Torres, MD, FCCP
Professor of Medicine (Pulmonology)
Universidad de Barcelona
Director
Institut Clínic de Pneumologia i Cirurgia Toràcica
Hospital Clinic de Barcelona
Barcelona, Spain

Cody D. Turner, MD
Department of Medicine
Division of Critical Care
Summa Akron City Hospital
Akron, Ohio

Krista Turner, MD
Medical Director of Trauma
Department of Surgery
The Medical Center of Aurora
Aurora, Colorado

Edith Tzeng, MD
Professor of Surgery
University of Pittsburgh
Chief of Vascular Surgery
VA Pittsburgh Healthcare System
Pittsburgh, Pennsylvania

Benoit Vallet, PhD
Professor of Anesthesiology and Critical Care
Lille University School of Medicine
Lille University Hospital
Lille, France

Greet Van den Berghe, MD, PhD
Professor of Medicine
Division of Intensive Care Medicine
Katholieke Universiteit Leuven
Leuven, Belgium

Arthur R.H. van Zanten, MD, PhD
Hospital Medical Director
Department of Intensive Care
Gelderse Vallei Hospital
Ede, The Netherlands

Floris Vanommeslaeghe, MD
Renal Division
Ghent University Hospital
Ghent, Belgium

Ramesh Venkataraman, AB
Consultant in Critical Care Medicine
Academic Coordinator
Department of Critical Care
Apollo Hospitals
Chennai, India

Kathleen M. Ventre, MD
Assistant Professor of Pediatrics
University of Colorado School of Medicine
Children's Hospital Colorado
Aurora, Colorado

Paul M. Vespa, MD, FCCM, FAAN, FANA, FNCS
Assistant Dean for Research in Critical Care Medicine
Gary L. Brinderson Family Chair in Neurocritical Care
Director of Neurocritical Care
Professor of Neurology and Neurosurgery
David Geffen School of Medicine at UCLA
University of California Los Angeles
Los Angeles, California

Jean-Louis Vincent, MD, PhD
Professor of Intensive Care
Université Libre de Bruxelles
Department of Intensive Care
Erasmé Hospital
Brussels, Belgium

Florian M.E. Wagenlehner, MD, PhD
Professor of Urology
Clinic for Urology, Pediatric Urology, and Andrology
Justus-Liebig-University
Giessen, Germany

Justin P. Wagner, MD
Resident
Department of Surgery
David Geffen School of Medicine at UCLA
Los Angeles, California

Paul Phillip Walker, BMedSci (Hons), BM BS, MD
Consultant Physician
Respiratory Medicine
University Hospital Aintree
Honorary Senior Lecturer
Respiratory Research Department
University of Liverpool
Liverpool, Great Britain

Keith R. Walley, MD
Professor
Department of Medicine
University of British Columbia
Vancouver, British Columbia, Canada

Robert J. Walter, MD
Brandywine Pediatrics
Wilmington, Delaware

Kevin K.W. Wang, PhD
Executive Director
Center for Neuroproteomics and Biomarker Research
Associate Professor
Department of Psychiatry
McKnight Brain Institute
University of Florida
Gainesville, Florida

Tisha Wang, MD
Associate Clinical Professor
Division of Pulmonary and Critical Care
David Geffen School of Medicine at UCLA
Los Angeles, California
NICHOLAS S. WARD, MD
Associate Professor of Medicine
Division of Critical Care, Pulmonary and Sleep Medicine
The Warren Alpert Medical School at Brown University
Providence, Rhode Island

RICHARD G. WUNDERINK, MD
Professor of Medicine
Division of Pulmonary and Critical Care
Northwestern University Feinberg School of Medicine
Medical Director, Medical ICU
Northwestern Memorial Hospital
Chicago, Illinois

LORRAINE B. WARE, MD
Professor of Medicine and Pathology, Microbiology, and Immunology
Division of Allergy, Pulmonary, and Critical Care Medicine
Vanderbilt University School of Medicine
Nashville, Tennessee

CHRISTOPHER WYBOURN, MD
Trauma/Critical Care Fellow
Department of Surgery
University of California San Francisco
San Francisco General Hospital
San Francisco, California

ZHIHUI YANG, PhD
Associate Scientific Director and Senior Scientist
Center for Neuroproteomics and Biomarkers Research
Department of Psychiatry and Neuroscience
University of Florida College of Medicine
Gainesville, Florida

GREGORY A. WATSON, MD, FACS
Assistant Professor of Surgery and Critical Care
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

LONNY YARMUS, DO
Associate Professor of Medicine
Clinical Chief
Division of Pulmonary and Critical Care
Johns Hopkins University School of Medicine
Baltimore, Maryland

WOLFGANG WEIDNER, MD, PhD
Professor of Urology
Clinic for Urology, Pediatric Urology, and Andrology
Justus-Liebig-University
Giessen, Germany

SACHIN YENDE, MD, MS
Associate Professor
Departments of Critical Care Medicine and Clinical and Translational Sciences
Director
Clinical Epidemiology Program
CRISMA Center
University of Pittsburgh School of Medicine
Vice President
Critical Care
VA Hospital Pittsburgh
Pittsburgh, Pennsylvania

CHARLES WEISSMAN, MD
Professor and Chair
Department of Anesthesiology and Critical Care Medicine
Hadassah-Hebrew University Medical Center
Hebrew University—Hadassah School of Medicine
Jerusalem, Israel

MARK H. WILCOX, MD
Professor and Head of Medical Microbiology
University of Leeds Faculty of Medicine and Health
Leeds General Infirmary NHS Trust
Leeds, United Kingdom

KEITH M. WILLE, MD, MSPH
Associate Professor of Medicine
Department of Internal Medicine
Division of Pulmonary and Critical Care
University of Alabama Birmingham
Birmingham, Alabama

MICHIEL WOLFF, MD
Head
Medical and Infectious Diseases Intensive Care
Bichat-Claude Bernard Hospital
Paris, France

STEPHANIE GRACE YI, MD
Abdominal Transplant Surgery Fellow
Houston Methodist Hospital
Houston, Texas

DONGNAN YU, MD
Attending Physician
Department of Anesthesiology
Guangdong General Hospital
Guangdong Academy of Medical Sciences
Guangzhou, Guangdong, China

FELIX YU, MD
Assistant Professor of Medicine
Division of Pulmonary, Critical Care and Sleep Medicine
Tufts Medical Center
Boston, Massachusetts
Roger D. Yusen, MD, MPH
Associate Professor of Medicine
Division of Pulmonary and Critical Care Medicine
Washington University School of Medicine in St. Louis
St. Louis, Missouri

Allyson R. Zazulia, MD
Associate Professor
Departments of Neurology and Radiology
Associate Dean
Continuing Medical Education
Washington University
St. Louis, Missouri
IN MEMORIAM

MITCHELL P. FINK, MD

This edition of the *Textbook of Critical Care* is dedicated to the late Mitchell P. Fink, MD. Dr. Fink was Professor of Surgery and Vice Chair for Critical Care at the University of California Los Angeles and an international leader and giant in the field of critical care medicine. He was the lead author of the Fifth Edition of this textbook. In the Fifth Edition, Dr. Fink inspired a novel, informative, user-friendly, and exciting approach to revising the textbook that served as the backbone for the Sixth and this new Seventh Edition, which he also importantly helped to formulate. Mitch was a great friend and colleague to each of us, and he will be dearly missed by us and by the entire field. We are confident that his visionary work on this book will serve, through its users, to improve the care and outcomes of critically ill adults and children worldwide for many years into the future.
To my family and friends and all who can contribute to make a better world
— Jean-Louis Vincent

To Norma-May, my true love. To Claire and Erin, who bring me the greatest joy, and to my mother, Dale Abraham, for her support throughout my life
— Edward Abraham

To my father, Ernest E. Moore, who was a family practitioner for 50 years in Butler, Pennsylvania. He inspired me by his dedication to self-education, humility, and service to his community
— Frederick A. Moore

To my family, friends, colleagues, and staff for their sacrifices, support, and dedication, and to the late Dr. Peter Safar for inspiring each of us to bring promising new therapies to the bedside of the critically ill
— Patrick M. Kochanek
Patients admitted to the intensive care unit (ICU) with critical illness or injury are at risk for neurologic complications. A sudden or unexpected change in the neurologic condition of a critically ill patient often heralds a complication that may cause direct injury to the central nervous system (CNS). Alternatively, such changes may simply be neurologic manifestations of the underlying critical illness or treatment that necessitated ICU admission (e.g., sepsis). These complications can occur in patients admitted to the ICU without neurologic disease and in those admitted for management of primary CNS problems (e.g., stroke). Neurologic complications can also occur as a result of invasive procedures and therapeutic interventions performed. Commonly, recognition of neurologic complications is delayed or missed entirely because ICU treatments (e.g., intubation, drugs) interfere with the physical examination or confound the clinical picture. In other cases, neurologic complications are not recognized because of a lack of sensitive methods to detect the problem (e.g., delirium). Mortality and morbidity are increased among patients who develop neurologic complications; therefore, the intensivist must be vigilant in evaluating all critically ill patients for changes in neurologic status.

Despite the importance of neurologic complications of critical illness, few studies have specifically assessed their incidence and impact on outcome among ICU patients. Available data are limited to medical ICU patients; data regarding neurologic complications in general surgical and other specialty ICU populations must be extracted from other sources. In studies of medical ICU patients, the incidence of neurologic complications is 12.3% to 33%. Patients who develop neurologic complications have increased morbidity, mortality, and ICU length of stay. Sepsis is the most common problem associated with development of neurologic complications (sepsis-associated encephalopathy). In addition to encephalopathy, other common neurologic complications associated with critical illness include seizures and stroke. As the complexity of ICU care has increased, so has the risk of neurologic complications. Neuromuscular disorders are now recognized as a major source of morbidity in severely ill patients. Recognized neurologic complications occurring in selected medical, surgical, and neurologic ICU populations are shown in Table 1-1.

Impairment in Consciousness

Global changes in CNS function, best described in terms of impairment in consciousness, are generally referred to as encephalopathy or altered mental status. An acute change in the level of consciousness, undoubtedly, is the most common neurologic complication that occurs after ICU admission. Consciousness is defined as a state of awareness (arousal or wakefulness) and the ability to respond appropriately to changes in environment. For consciousness to be impaired, global hemispheric dysfunction or dysfunction of the brainstem reticular activating system must be present. Altered consciousness may result in a sleeplike state (coma) or a state characterized by confusion and agitation (delirium). States of acutely altered consciousness seen in the critically ill are listed in Table 1-2.

When an acute change in consciousness is noted, the patient should be evaluated, keeping in mind the patient's age, presence or absence of coexisting organ system dysfunction, metabolic status and medication list, and presence or absence of infection. In patients with a primary CNS disorder, deterioration in the level of consciousness (e.g., from stupor to coma) frequently represents the development of brain edema, increasing intracranial pressure, new or worsening intracranial hemorrhage, hydrocephalus, CNS infection, or cerebral vasospasm. In patients without a primary CNS diagnosis, an acute change in consciousness is often due to the development of infectious complications (i.e., sepsis-associated encephalopathy), drug toxicities, or the development or exacerbation of organ system failure. Nonconvulsive status epilepticus is increasingly being recognized as a cause of impaired consciousness in critically ill patients (Box 1-1).

States of altered consciousness manifesting as impairment in wakefulness or arousal (i.e., coma and stupor) and their causes are well defined. Much confusion remains, however, regarding the diagnosis and management of delirium, perhaps the most common state of impaired CNS functioning in critically ill patients at large. When dedicated instruments are used, delirium can be diagnosed in more than 80% of critically ill patients, making this condition the most common neurologic complication of critical illness. Much of the difficulty in establishing the diagnosis of delirium stems from the belief that delirium is a state characterized mainly by confusion and agitation and that such states are expected consequences of the unique environmental factors and sleep deprivation that characterize the ICU experience. Terms previously used to describe delirium in critically ill patients include ICU psychosis, acute confusional state, encephalopathy, and postoperative psychosis. It is now recognized that ICU psychosis is a misnomer; delirium is a more accurate term.

Currently accepted criteria for the diagnosis of delirium include abrupt onset of impaired consciousness, disturbed cognitive function, fluctuating course, and presence of a medical condition that could impair brain function. Subtypes of delirium include hyperactive (agitated) delirium and the more common hypoactive or quiet delirium. Impaired consciousness may be apparent as a reduction in awareness, psychomotor retardation, agitation, or impairment in attention (increased distractibility or vigilance). Cognitive impairment can include disorientation, impaired memory, and perceptual aberrations (hallucinations or illusions). Autonomic hyperactivity and sleep disturbances may be features of delirium in some patients (e.g., those with drug withdrawal syndromes, delirium tremens). Delirium in critically ill patients is associated with increased mortality, morbidity, and ICU length of stay. In general, sepsis and medications should be the primary etiologic considerations in critically ill patients who develop delirium. As has been noted, nonconvulsive status epilepticus is increasingly recognized as an important cause of impaired consciousness in critically ill patients. Although the general term can encompass other entities, such as absence and partial complex seizures, in critically ill patients, nonconvulsive status epilepticus is often referred to as status epilepticus of epileptic encephalopathy. It is characterized by alteration in consciousness or behavior associated with electroencephalographic evidence of continuous or periodic epileptiform activity without overt motor manifestations of seizures. In a study of comatose patients without overt seizure activity, nonconvulsive status epilepticus was evident in 8% of subjects. Nonconvulsive status epilepticus can precede or follow an episode of generalized convulsive status epilepticus; it can also occur in patients with traumatic brain injury, subarachnoid hemorrhage, global brain ischemia or anoxia, sepsis, and multiple organ failure. Despite the general consensus that nonconvulsive status
Table 1-1: Neurologic Complications in Selected Specialty Populations

<table>
<thead>
<tr>
<th>MEDICAL</th>
<th>SURGICAL</th>
<th>NEUROLOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow transplantation1,2</td>
<td>Carotid surgery5,19</td>
<td>Stroke progression or extension, reocclusion after thrombolysis, bleeding, seizures, delirium, brain edema, hemiation</td>
</tr>
<tr>
<td>Cancer6</td>
<td>Vascular surgery20,21</td>
<td>Bleeding, edema, seizures, CNS infection</td>
</tr>
<tr>
<td>Fulminant hepatic failure10</td>
<td>Aortic</td>
<td>Rebleeding, vasospasm, hydrocephalus, seizures</td>
</tr>
<tr>
<td>HIV/AIDS,1,11,13</td>
<td>Peripheral</td>
<td>Intracranial hypertension, bleeding, seizures, stroke (cerebrovascular injury), CNS infection</td>
</tr>
<tr>
<td>Pregnancy14</td>
<td>Transplantation12,22,25</td>
<td>Ascension of injury, stroke (vertebral artery injury)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke, delirium, brachial plexus injury, phrenic nerve injury</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke, cranial nerve injuries (recurrent laryngeal, glossopharyngeal, hypoglossal, facial), seizures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke, paraplegia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delirium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encephalopathy, seizures, opportunistic CNS infection, intracranial hemorrhage, Guillain-Barré syndrome, central pontine myelolysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke, opportunistic CNS infection, femoral neuropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seizures and coma (hypotension)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recurrent laryngeal nerve injury, stroke, delirium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myelopathy, radiculopathy, epidural abscess, meningitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delirium (fat embolism)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delirium (fat embolism)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encephalopathy, seizures, opportunistic CNS infection, intracranial hemorrhage, Guillain-Barré syndrome, central pontine myelolysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke, opportunistic CNS infection, femoral neuropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seizures and coma (hypotension)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recurrent laryngeal nerve injury, stroke, delirium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myelopathy, radiculopathy, epidural abscess, meningitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delirium (fat embolism)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delirium (fat embolism)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encephalopathy, seizures, opportunistic CNS infection, intracranial hemorrhage, Guillain-Barré syndrome, central pontine myelolysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke, opportunistic CNS infection, femoral neuropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seizures and coma (hypotension)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recurrent laryngeal nerve injury, stroke, delirium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myelopathy, radiculopathy, epidural abscess, meningitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delirium (fat embolism)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delirium (fat embolism)</td>
</tr>
</tbody>
</table>

CNS, central nervous system; HIV/AIDS, human immunodeficiency virus/acquired immunodeficiency syndrome; IOP, intracranial pressure; TURP, transurethral prostate resection.

Table 1-2: States of Acutely Altered Consciousness

<table>
<thead>
<tr>
<th>STATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coma</td>
<td>Closed eyes, sleeplike state with no response to external stimuli (pain)</td>
</tr>
<tr>
<td>Stupor</td>
<td>Responsive only to vigorous or painful stimuli</td>
</tr>
<tr>
<td>Lethargy</td>
<td>Drowsy, arouses easily and appropriately to stimuli</td>
</tr>
<tr>
<td>Delirium</td>
<td>Acute state of confusion with or without behavioral disturbance</td>
</tr>
<tr>
<td>Catatonia</td>
<td>Eyes open, unblinking, unresponsive</td>
</tr>
</tbody>
</table>

The new onset of a major neurologic deficit that manifests as a focal impairment in motor or sensory function (e.g., hemiparesis) or one that results in seizures usually indicates a primary problem referable to the cerebrovascular circulation. In a study evaluating the value of computed tomography (CT) in medical ICU patients, ischemic stroke and intracranial bleeding were the most common abnormalities associated with the new onset of a neurologic deficit or seizures. Overall, the frequency of new-onset stroke is between 1% and 4% in medical ICU patients. Among general surgical patients, the frequency of perioperative stroke ranges from 0.3% to 3.5%. Patients undergoing cardiac or vascular surgery and surgical patients with underlying cerebrovascular disease can be expected to have an increased risk of perioperative stroke.

The frequency of new or worsening focal neurologic deficits in patients admitted with a primary neurologic or neurosurgical disorder varies. For example, as many as 30% of patients with aneurysmal subarachnoid hemorrhage develop delayed ischemic neurologic deficits.

Patients admitted with stroke often develop worsening or new symptoms as a result of stroke progression, bleeding, or reocclusion of vessels previously opened with interventional therapy. In patients who have undergone elective intracranial surgery, postsurgical bleeding or infectious complications are the main causes of new focal deficits. In trauma patients, unrecognized injuries to the cerebrovascular circulation can cause new deficits. Patients who have sustained spinal cord injuries, and those who have undergone surgery of the spine or of the thoracic or abdominal aorta, can develop worsening or new symptoms of spinal cord injury. Early deterioration of CNS function after spinal cord injury usually occurs as a consequence of medical interventions to stabilize the spine, whereas late deterioration is usually due to hypotension and impaired cord perfusion. Occasionally, focal weakness or sensory symptoms in the extremities occur as a result of occult brachial plexus injury or compression neuropathy. New cranial nerve deficits in patients without primary neurologic problems can occur after neck surgery or carotid endarterectomy.

SEIZURES

The new onset of motor seizures occurs in 0.8% to 4% of critically ill medical ICU patients. New-onset seizures in general medical-surgical ICU patients is typically caused by narcotic withdrawal, hypotension, drug toxicities, or previously unrecognized structural abnormalities. New stroke, intracranial bleeding, and CNS infection...
are other potential causes of seizures after ICU admission. The frequency of seizures is higher in patients admitted to the ICU with a primary neurologic problem such as traumatic brain injury, aneurysmal subarachnoid hemorrhage, stroke, or CNS infection. Because nonconvulsive status epilepticus may be more common than was previously appreciated, this problem should also be considered in the differential diagnosis of patients developing new, unexplained, or prolonged alterations in consciousness.

GENERALIZED WEAKNESS AND NEUROMUSCULAR DISORDERS

Generalized muscle weakness often becomes apparent in ICU patients as previous impairments in arousal are resolving or sedative and neuromuscular blocking agents are being discontinued or tapered. Polyneuropathy and myopathy associated with critical illness are now well recognized as the principal causes of new-onset generalized weakness among ICU patients being treated for nonneuromuscular disorders. These disorders also may be responsible for prolonged ventilator dependency in some patients. Patients at increased risk for these complications include those with sepsis, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome, as well as those who require prolonged mechanical ventilation. Other risk factors include treatment with corticosteroids or neuromuscular blocking agents. In contrast to demyelinating neuropathies (e.g., Guillain-Barré syndrome), critical illness polyneuropathy is primarily an axonal condition. Critical illness polyneuropathy is diagnosed in a high percentage of patients undergoing careful evaluation for weakness acquired while in the ICU. Because primary myopathy coexists in a large number of patients with critical illness polyneuropathy, *ICU-acquired paresis* or *critical illness neuromuscular abnormalities* may be better terms to describe this problem. Although acute Guillain-Barré syndrome and myasthenia gravis are rare complications of critical illness, these diagnoses should also be considered in patients who develop generalized weakness in the ICU.

NEUROLOGIC COMPLICATIONS OF PROCEDURES AND TREATMENTS

Routine procedures performed in the ICU or in association with evaluation and treatment of critical illness can result in neurologic complications. The most obvious neurologic complications are those associated with intracranial bleeding secondary to the treatment of stroke and other disorders with thrombolytic agents or anticoagulants. Other notable complications are listed in Table 1-3.

EVALUATION OF SUDDEN NEUROLOGIC CHANGE

A new or sudden change in the neurologic condition of a critically ill patient necessitates a focused neurologic examination, review of the clinical course and medications administered before the change, a thorough laboratory assessment, and appropriate imaging or neurophysiologic studies when indicated. The type and extent of the evaluation depend on clinical context and the general category of neurologic change occurring. The history and physical examination should lead the clinician to the diagnostic approach best suited to the individual patient.

Essential elements of the neurologic examination include an assessment of the level and content of consciousness, pupillary size and reactivity, and motor function. Additional evaluation of the cranial nerves and peripheral reflexes and a sensory examination are conducted as indicated by the clinical circumstances. If the patient is comatose on initial evaluation, a more detailed coma examination should be performed to help differentiate structural from metabolic causes of coma. When the evaluation reveals only a change in arousal without evidence of a localizing lesion in the CNS, a search for infection, discontinuation or modification of drug therapy, and a
general metabolic evaluation may be indicated. Lumbar puncture to aid the diagnosis of CNS infection may be warranted in selected neurosurgical patients and immunocompromised individuals. Lumbar puncture to rule out nosocomially acquired meningitis in other patients is generally not rewarding. Electroencephalography should be performed in patients with clear evidence of seizures, as well as when the diagnosis of nonconvulsive status epilepticus is being entertained. Continuous electroencephalography should be considered when the index of suspicion for nonconvulsive status epilepticus remains high and the initial electroencephalographic studies are unrevealing.

Computed tomography (CT) is indicated for nonneurologic patients with new focal deficits, seizures, or otherwise unexplained impairments in arousal. In patients with primary neurologic disorders, CT is indicated if worsening brain edema, herniation, bleeding, and hydrocephalus are considerations when new deficits or worsening neurologic status occurs. In some cases, when the basis for a change in neurologic condition remains elusive, magnetic resonance imaging (MRI) may be helpful. In particular, the diffusion-weighted MRI technique can reveal structural abnormalities such as hypoxic brain injury, fat embolism, vasculitis, cerebral venous thrombosis, or multiple infarcts following cardiopulmonary bypass that are not apparent by standard CT or conventional MRI. MRI may be the imaging modality of choice in patients with human immunodeficiency virus (HIV) and new CNS complications. For patients who develop signs and symptoms of spinal cord injury complicating critical illness, MRI or somatosensory evoked potentials can be used to further delineate the nature and severity of the injury. For patients who develop generalized muscle weakness or unexplained ventilator dependency, electromyography and nerve conduction studies can confirm the presence of critical illness polyneuropathy or myopathy.

Monitoring for Neurologic Changes

The common occurrence of neurologic changes in critically ill patients emphasizes the need for vigilant monitoring. A variety of clinical techniques such as the Glasgow Coma Scale, National Institutes of Health Stroke Scale, Ramsay Sedation Scale, Richmond Agitation-Sedation Scale, and Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) can be used to monitor clinical neurologic status. Neurophysiologic methods such as the bispectral index may provide more objective neurologic monitoring in the future for patients admitted to the ICU with and without primary neurologic problems. For patients admitted to the ICU with a primary neurologic disorder, a variety of monitoring techniques including measurements of intracranial pressure, near-infrared spectroscopy, brain tissue PO2, transcranial Doppler, and electroencephalography are available.

TABLE 1-3 Neurologic Complications Associated with ICU Procedures and Treatments

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>COMPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiography</td>
<td>Cerebral cholesterol emboli syndrome</td>
</tr>
<tr>
<td>Anticoagulants/antiplatelet agents</td>
<td>Intracranial bleeding</td>
</tr>
<tr>
<td>Arterial catheterization</td>
<td>Cerebral embolism</td>
</tr>
<tr>
<td>Bronchoscopy</td>
<td>Increased ICP</td>
</tr>
<tr>
<td>Central venous catheterization</td>
<td>Cerebral air embolism, carotid dissection, Horner’s syndrome, phrenic nerve injury, brachial plexus injury, cranial nerve injury</td>
</tr>
<tr>
<td>DC cardioversion</td>
<td>Embolic stroke, seizures</td>
</tr>
<tr>
<td>Dialysis</td>
<td>Seizures, increased ICP (diabetes equilibration syndrome)</td>
</tr>
<tr>
<td>Endovascular procedures (CNS)</td>
<td>Vessel rupture, thrombosis, reperfusion bleeding</td>
</tr>
<tr>
<td>Epidural catheter</td>
<td>Spinal epidural hematoma, epidural abscess</td>
</tr>
<tr>
<td>ICP monitoring</td>
<td>CNS infection (ventriculitis), hemorrhage</td>
</tr>
<tr>
<td>Intraaortic balloon pump</td>
<td>Lower extremity paralysis</td>
</tr>
<tr>
<td>Intubation</td>
<td>Spinal cord injury</td>
</tr>
<tr>
<td>Left ventricular assist devices</td>
<td>Stroke, seizures</td>
</tr>
<tr>
<td>Lumbar puncture or drain</td>
<td>Meningitis, herniation</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>Cerebral air embolism, increased ICP (high PEEP and hypercapnia), seizures (hypocapnia)</td>
</tr>
<tr>
<td>Nasogastric intubation</td>
<td>Intracranial placement</td>
</tr>
</tbody>
</table>

CNS, central nervous system; DC, direct current; ICP, intracranial pressure; ICU, intensive care unit; PEEP, positive end-expiratory pressure.

ANNOTATED REFERENCES

This prospective multicenter study of critically ill patients was the first to assess the clinical incidence, risk factors, and outcomes of mechanically ventilated patients developing ICU-acquired weakness, emphasizing a central role for corticosteroid use in its genesis and prolonged mechanical ventilation as a relevant ICU outcome.

Recognizing that the diagnosis of delirium is often difficult in the critically ill patient receiving mechanical ventilation, the authors adapted a common method for assessing delirium using the Confusion Assessment Method to critically ill patients receiving mechanical ventilation. This prospective evaluation revealed high sensitivity, specificity, and inter-rater reliability in detecting delirium in 80% of the patient population they studied.

In an effort to dispel the myth that environmental conditions lead to “ICU psychosis,” the authors of this article argue that ICU psychosis is more appropriately described as delirium. The etiology and management of delirium in critically ill patients are reviewed.

The authors of this article present an overview of central nervous system (CNS) complications of critical illness and ICU procedures in critically ill patients without primary disorders of the CNS.

This retrospective study of 23 critically ill patients undergoing MRI because of a disparity in clinical neurologic findings and CT imaging revealed that additional useful diagnostic and prognostic information can be obtained, especially when diffusion- and perfusion-weighted MR sequences are obtained.
REFERENCES

Agitation and Delirium
Kwame Frimpong, E. Wesley Ely, and Arna Banerjee

Agitation and delirium are commonly encountered in the intensive care unit (ICU). They are more than just an inconvenience; these conditions can have deleterious effects on patient and staff safety and contribute to poor outcomes. It is therefore important for clinicians to be able to recognize agitation and delirium and to have an organized approach for its evaluation and management.

AGITATION

Agitation is a psychomotor disturbance characterized by excessive motor activity associated with a feeling of inner tension. The activity is usually nonproductive and repetitious, consisting of behaviors such as pacing, fidgeting, wringing of hands, pulling of clothes, and an inability to sit still. Careful observation of the patient may reveal the underlying intent. In the ICU, agitation is frequently related to anxiety or delirium. Agitation may be caused by various factors: metabolic disorders, hyperthermia, hypoxia, hypotension, use of sedative drugs and/or analgesics, sepsis, alcohol withdrawal, and long-term psychoactive drug use to name a few. It can also be caused by external factors such as noise, discomfort, and pain. Associated with a longer length of stay in the ICU and higher costs, agitation can be mild, characterized by increased movements and an apparent inability to get comfortable, or it can be severe. Severe agitation can be life threatening, leading to higher rates of self-extubation, self-removal of catheters and medical devices, nosocomial infections, hypoxia, barotrauma, and/or hypotension due to patient/ventilator asynchrony. Indeed, recent studies have shown that agitation contributes to ventilator asynchrony, increased oxygen consumption, and increased production of CO₂ and lactic acid; these effects can lead to life-threatening respiratory and metabolic acidosis.

DELIRIUM

Delirium can be defined as follows: (1) A disturbance of consciousness (i.e., reduced clarity of awareness of the environment) with reduced ability to focus, sustain, or shift attention. (2) A change in cognition (e.g., memory deficit, disorientation, language disturbance) or development of a perceptual disturbance that is not better accounted for by a preexisting, established, or evolving dementia. (3) The disturbance develops over a short period (usually hours to days) and tends to fluctuate during the course of the day. (4) There is evidence from the history, physical examination, or laboratory findings that the disturbance is a direct physiologic consequence of a general medical condition, an intoxicating substance, medication use, or more than one cause (Fig. 2-1). Delirium is commonly underrecognized in the ICU and has a reported prevalence of 20% to 80%, depending on the severity of illness and the need for mechanical ventilation. Recent investigations have shown that the presence of delirium is a strong predictor of longer hospital stay, higher costs, and increased risk of death. Each additional day with delirium increases a patient’s risk of dying by 10%. Longer periods of delirium are also associated with greater degrees of cognitive decline when patients are evaluated after one year. Thus, delirium can adversely affect the quality of life in survivors of critical illnesses and may serve as an intermediate recognizable step for targeting therapies to prevent poor outcomes in survivors of critical illness.

Unfortunately, the true prevalence and magnitude of delirium have been poorly documented because myriad terms including acute confusional state, ICU psychosis, acute brain dysfunction, and encephalopathy, have been used to describe this condition. Delirium can be classified according to psychomotor behavior into hypoactive delirium, hyperactive delirium, or a mixed subtype. Hypoactive delirium, which is the most prevalent form of delirium, is characterized by decreased physical and mental activity and inattention. In contrast, hyperactive delirium is characterized by combativeness and agitation. Patients with both features have mixed delirium. Hyperactive delirium puts both patients and caregivers at risk of serious injury but fortunately only occurs in a minority of critically ill patients. Hypoactive delirium might actually be associated with a worse prognosis.

Although healthcare professionals realize the importance of recognizing delirium, it frequently goes unrecognized in the ICU. Even when ICU delirium is recognized, most clinicians consider it an expected event that is often iatrogenic and without consequence. However, it needs to be viewed as a form of organic brain dysfunction that has consequences if left undiagnosed and untreated.

Risk Factors for Delirium

The risk factors for agitation and delirium are many and overlap to a large extent (Table 2-1). Fortunately there are several strategies that can aid clinicians in recalling the list; two common ones are IWATCH-DEATH and DELIRIUM (Table 2-2). In practical terms, risk factors can be divided into three categories: the acute illness itself, patient factors, and iatrogenic or environmental factors. Importantly, a number of medications that are commonly used in the ICU are associated with the development of agitation and delirium (Box 2-1). A thorough approach to the treatment and support of the acute illness (e.g., controlling sources of sepsis and giving appropriate antibiotics; correcting hypoxia, metabolic disturbances, dehydration, and hyperthermia; normalizing sleep/wake cycles), as well as minimizing iatrogenic factors (e.g., excessive sedation), can reduce the incidence and/or severity of delirium and its attendant complications. A retrospective study conducted on postoperative delirium, specifically in patients undergoing cardiopulmonary bypass, has alluded to a decreased incidence of delirium in patients pre-treated with statins. Furthermore, ICU statins have been associated with decreased delirium, most significantly in the early stages of sepsis; in contrast to this, discontinuation of statins has been shown to be associated with increased delirium.

PATHOPHYSIOLOGY

The pathophysiology of delirium is poorly understood, although there are a number of hypotheses:

- **Neurotransmitter imbalance.** Multiple neurotransmitters have been implicated, including dopamine (excess), acetylcholine (relative depletion), γ-aminobutyric acid (GABA), serotonin, endorphins, norepinephrine, and glutamate.
- **Inflammatory mediators.** Inflammatory mediators, such as tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), and other cytokines and chemokines, have been implicated in the pathogenesis of endothelial damage, thrombin formation, and microvascular dysfunction in the central nervous system (CNS), contributing to delirium. Recently, a study in the ICU has strengthened the evidence of a role for endothelial dysfunction in increasing the duration of delirium.
Inattention and other pivotal features outlined above. With permission to days, disorganized thinking, and altered levels of consciousness. While hallucinations, delusions, and illusions may be part of the perceptual disturbances seen in delirium, they on their own are not synonymous with delirium, a diagnosis of which requires the presence of inattention and other pivotal features outlined above. (With permission from E. Wesley Ely and A. Morandi) (www.icudelirium.org).

FIGURE 2-1 Acute brain dysfunction. Patients who are unresponsive to voice are considered to be in a coma. Patients who respond to voice can be further evaluated for delirium using validated delirium monitoring instruments. Inattention is a cardinal feature of delirium. Other pivotal features include a change in mental status that fluctuates over hours to days, disorganized thinking, and altered levels of consciousness. While hallucinations, delusions, and illusions may be part of the perceptual disturbances seen in delirium, they on their own are not synonymous with delirium, a diagnosis of which requires the presence of inattention and other pivotal features outlined above. (With permission from E. Wesley Ely and A. Morandi) (www.icudelirium.org).

TABLE 2-1 Risk Factors for Agitation and Delirium

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >70 years</td>
<td>BUN/creatinine ratio ≥18</td>
</tr>
<tr>
<td>Transfer from a nursing home</td>
<td>Renal failure, creatinine > 2.0 mg/dL</td>
</tr>
<tr>
<td>History of depression</td>
<td>Liver disease</td>
</tr>
<tr>
<td>History of dementia, stroke, or epilepsy</td>
<td>CHF</td>
</tr>
<tr>
<td>Alcohol abuse within past month</td>
<td>Cardiogenic or septic shock</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>Drug overdose or illicit drug use</td>
<td>Infection</td>
</tr>
<tr>
<td>HIV infection</td>
<td>CNS pathology</td>
</tr>
<tr>
<td>Psychoactive medications</td>
<td>Urinary retention or fecal impaction</td>
</tr>
<tr>
<td>Hypo- or hypltematremia</td>
<td>Tube feeding</td>
</tr>
<tr>
<td>Hypo- or hyperglycemia</td>
<td>Rectal or bladder catheters</td>
</tr>
<tr>
<td>Hypo- or hyperthyroidism</td>
<td>Physical restraints</td>
</tr>
<tr>
<td>Hypothermia or fever</td>
<td>Central line catheters</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Malnutrition or vitamin deficiencies</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>Procedural complications</td>
</tr>
<tr>
<td>Acidosis or alkalosis</td>
<td>Visual or hearing impairment</td>
</tr>
<tr>
<td>Pain</td>
<td>Sleep disruption</td>
</tr>
<tr>
<td>Fear and anxiety</td>
<td></td>
</tr>
</tbody>
</table>

BUN, blood urea nitrogen; CHF, congestive heart failure; CNS, central nervous system; HIV, human immunodeficiency virus.

- Impaired oxidative metabolism. According to this hypothesis, delirium is a result of cerebral insufficiency secondary to a global failure in oxidative metabolism.
- Large neutral amino acids. Increased cerebral uptake of tryptophan and tyrosine can lead to elevated levels of serotonin, dopamine, and norepinephrine in the CNS. Altered availability of these amino acids is associated with increased risk of development of delirium.60

ASSESSMENT

Recently, the Society of Critical Care Medicine (SCCM) published guidelines for the use of sedatives and analgesics in the ICU.41 The SCCM has recommended the routine monitoring of pain, anxiety, and delirium and the documentation of responses to therapy for these conditions.42

There are many scales available for the assessment of agitation and sedation, including the Ramsay Scale,43 the Riker Sedation-Agitation Scale (SAS),44 the Motor Activity Assessment Scale (MAAS),45 the Richmond Agitation-Sedation Scale (RASS),46 the Adaptation to Intensive Care Environment (ATICE)47 scale, and the Minnesota Sedation Assessment Tool (MSAT).48 Most of these scales have good reliability and validity among adult ICU patients and can be used to set targets for goal-directed sedative administration. The SAS, which scores agitation and sedation using a 7-point system, has excellent inter-rater reliability (kappa = 0.92) and is highly correlated (r² = 0.83 to 0.86) with other scales. The RASS (Table 2-3), however, is the only method shown to detect variations in the level of consciousness over time or in response to changes in sedative and analgesic drug use.49 The 10-point RASS scale has discrete criteria to distinguish levels of agitation and sedation. The evaluation of patients consists of a 3-step process. First, the patient is observed to determine whether he or she is alert, restless, or agitated (0 to +4). Second, if the patient is not alert and does not show positive motoric characteristics, the patient’s name is called and his or her sedation level scored based on the duration of eye contact (−1 to −3). Third, if there is no eye opening on verbal

TABLE 2-2 Mnemonic for Risk Factors for Delirium and Agitation

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWATCHDEATH</td>
<td>Drugs</td>
</tr>
<tr>
<td></td>
<td>Electrolyte and physiologic abnormalities</td>
</tr>
<tr>
<td></td>
<td>Lack of drugs (withdrawal)</td>
</tr>
<tr>
<td></td>
<td>Infection</td>
</tr>
<tr>
<td></td>
<td>Reduced sensory input (blindness, deafness)</td>
</tr>
<tr>
<td></td>
<td>Intracranial problems (CVA, meningitis, seizure)</td>
</tr>
<tr>
<td>Delirium</td>
<td>Urinary retention and fecal impaction</td>
</tr>
<tr>
<td></td>
<td>Myocardial problems (MI, arrhythmia, CHF)</td>
</tr>
</tbody>
</table>

CHF, congestive heart failure; CVA, cerebrovascular accident; MI, myocardial infarction.

TABLE 2-3 Commonly Used Drugs Associated With Delirium and Agitation

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzodiazepines</td>
<td>Itralozepine</td>
</tr>
<tr>
<td>Opiates (especially meperidine)</td>
<td></td>
</tr>
<tr>
<td>Anticholinergics</td>
<td>Dicyclomine, hyoscine</td>
</tr>
<tr>
<td>Antihistamines</td>
<td>Ketanserin</td>
</tr>
<tr>
<td>H₂ blockers</td>
<td></td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Ceftriaxone</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Hydrocortisone</td>
</tr>
<tr>
<td>Metoclopramide</td>
<td></td>
</tr>
</tbody>
</table>

BOX 2-1 Commonly Used Drugs Associated With Delirium and Agitation

Benzodiazepines
Opiates (especially meperidine)
Anticholinergics
Antihistamines
H₂ blockers
Antibiotics
Corticosteroids
Metoclopramide
stimulation, the patient's shoulder is shaken or pressure applied over the sternum by rubbing, and the response noted (movement to physical stimulation). If not alert, state patient's name and restless, or agitated? Observe patient. Is patient alert, or mechanical ventilation. A number of tools have been developed to aid in the detection of delirium in the ICU. These tools have been validated for use in both intubated and nonintubated patients and measured against a "gold standard," the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria. The tools are the Confusion Assessment Method for the ICU (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC).

The CAM-ICU (Fig. 2-2) is a delirium measurement tool developed by a team of specialists in critical care, psychiatry, neurology, and geriatrics. Administered by a nurse, the evaluation takes only 1 to 2 minutes to conduct and is 98% accurate in detecting delirium as compared with a full DSM-V assessment by a geriatric psychiatrist.

To perform the CAM-ICU, patients are first evaluated for level of consciousness; patients who respond to verbal commands (a RASS score of −3 or higher level of arousal) can then be assessed for delirium. The CAM-ICU comprises four features: (1) a change in mental status from baseline or a fluctuation in mental status, (2) inattention, (3) disorganized thinking, and (4) altered level of consciousness. Delirium is diagnosed if patients have features 1 and 2, and either feature 3 or 4 is positive (see Fig. 2-2).

The ICDSC (Table 2-4) is a checklist-based assessment tool that evaluates inattention, disorientation, hallucination, delusion or...
psychosis, psychomotor agitation or retardation, inappropriate speech or mood, sleep/wake cycle disturbances, and fluctuations in these symptoms. Each of the eight items is scored as absent or present (0 or 1), respectively, and summed. A score of 4 or above indicates delirium, while 0 indicates no delirium. Patients with scores between 1 and 3 are considered to have subsyndromal delirium, which has worse prognostic implications than the absence of delirium but a better prognosis than clearly present delirium.

Recent studies have called into question the usefulness of delirium evaluations for patients under sedation.60-62 A small subset of patients (approximately 10%) were noted to have rapidly reversible sedation-related delirium, but unfortunately in this study the majority of patients continued to have persistent delirium even after interruption of sedation. Thus, when feasible, delirium evaluation should be performed after interruption of sedation; however delirium evaluations should not be forgone just because a patient is under sedation since the omission of the diagnosis would be far worse than overdiagnosing delirium in a handful of patients.

MANAGEMENT

The development of effective evidence-based strategies and protocols for prevention and treatment of delirium awaits data from ongoing randomized clinical trials of both nonpharmacologic and ongoing randomized clinical trials of both nonpharmacologic and phase 2.

FIGURE 2-3 Delirium Protocol as a part of ABCDEF Bundle.

1. **Dr. DRE:**
 - Diseases: Sepsis, CHF, COPD
 - Drug Removal: SATs and stopping benzodiazepines/narcotics
 - Environment: Immobilization, sleep and day/night orientation, hearing aids, eye glasses, noise
 - THINK:
 - Toxic Situations – CHF, shock, dehydration – Deliriogenic meds (tight titration) – New organ failure (liver, kidney, etc.)
 - Hypoxemia
 - Infection/sepsis (nosocomial), immobilization
 - Nonpharmacological interventions
 - Electrolyte problems

2. Consider stopping or substituting deliriogenic medications such as benzodiazepines, anticholinergic medications (metoclopramide, H2 blockers, promethazine, diphenhydramine), steroids, etc.

3. See non-pharmacological protocol – see below.

4. If patient is non-verbal assess via CPOT, or if patient is verbal assess via visual analog scale.

5. Analgesia – Adequate pain control may decrease delirium. Consider opiates, non-steroidals, acetaminophen, or gabapentin (neuropathic pain).

6. Typical or atypical antipsychotics. Discontinue if high fever, QTc prolongation, or drug-induced rigidity.

7. Consider non-benzodiazepine sedation strategies (propofol or dexmedetomidine)

8. Spontaneous Awakening Trial (SAT) – If meets safety criteria (no active seizures, no alcohol withdrawal, no agitation, no paralytics, no myocardial ischemia, normal intracranial pressure, FiO2 ≥ 70%)

9. Spontaneous Breathing Trial (SBT) – If meets safety criteria (no agitation, no myocardial ischemia, FiO2 ≥ 50%, adequate inspiratory efforts, O2 saturation ≥ 88%, no vasopressor use, PEEP ≤ 7.5 cm)
pharmacologic strategies. Refer to Chapter 51 for a detailed description of management strategies of delirium, including an empiric sedation and delirium protocol. A brief overview is provided here.

When agitation or delirium develops in a previously comfortable patient, a search for the underlying cause should be undertaken before attempting pharmacologic intervention. A rapid assessment should be performed, including assessment of vital signs and physical examination to rule out life-threatening problems (e.g., hypoxia, self-extubation, pneumothorax, hypotension), or other acutely reversible physiologic causes (e.g., hypoglycemia, metabolic acidosis, stroke, seizure, pain). The previously mentioned IWATCHDEATH and DELIRIUM mne- monics can be particularly helpful in guiding this initial evaluation.

Once life-threatening causes are ruled out as possible etiologies, aspects of good patient care such as reorienting patients, improving sleep and hygiene, providing visual and hearing aids if previously used, removing medications that can provoke delirium, and decreasing the use of invasive devices if not required (e.g., bladder catheters, restraints), should be undertaken.

The use of ABCDEs (Awakening and Breathing Trials, Choice of appropriate sedation, Delirium monitoring and management, and Early mobility and Exercise) has been shown to decrease the incidence of delirium and improve patient outcome (Fig. 2-3). This algorithm based on the PAD 2013 guidelines41 involves the following: (1) Routine assessment of agitation, depth and quality of sedation and delirium using appropriate scales (RASS and SAS for agitation and sedation and CAM-ICU or ICDSC for delirium). They recommend using protocol target-based sedation and targeting the lightest possible sedation, thus exposing the patient to lower cumulative doses of sedatives and/or daily awakening trials and spontaneous breathing trials to reduce the total time spent on mechanical ventilation. Coordination of daily awakening and daily breathing was associated with shorter durations of mechanical ventilation, reduction in length of hospital stay, and no long-term neuropsychologic consequences of waking patients during critical illness.65,66 (2) Treatment should start with treating analgesia first. Choosing the right sedative regimen in critically ill patients is important. Numerous studies have confirmed that benzodiazepines are associated with poor clinical outcomes.77,68,69 The guidelines also recommend avoiding rivastigmine and antipsy- chotics if there is an increased risk of Torsades de Pointes. (3) Prevention also plays an important role. Exercise and early mobility in ICU patients is associated with decreased length of both ICU and hospital polypharmacy.23 Risk factors for delirium need to be identified and eliminated. Promoting sleep and restarting baseline antipsy- chotic medications are also important. Data from the Maximizing Efficacy of Targeted Sedation and Reducing Neurological Dysfunction (MENDS)61 study and the Safety and Efficacy of Dexametomidine Compared to Midazolam (SEDCOM) trial62 also support the view that dexmedetomidine can decrease the duration and prevalence of delirium when compared to lorazepam or midazolam. Pharmacologic therapy should be attempted only after correcting any contributing factors or underlying physiologic abnormalities. Although these agents are intended to improve cognition, they all have psychoactive effects that can further cloud the sensorium and promote a longer overall duration of cognitive impairment. Patients who manifest delirium should be treated with traditional antipsychotic medication. Newer “atypical” antipsychotic agents (e.g., risperidone, ziprasidone, quetiap- ine, olanzapine) may decrease the duration of delirium.63,64

Benzodiazepines are not recommended for the management of delirium because they can paradoxically exacerbate delirium. These drugs can also promote oversedation and respiratory suppression. However, they remain the drugs of choice for the treatment of delirium tremens (and other withdrawal syndromes), and seizures. At times, mechanical restraints may be needed to ensure the safety of patients and staff while waiting for medications to take effect. It is important to keep in mind, however, that restraints can increase agita- tion and delirium, and their use may have adverse consequences, including strangulation, nerve injury, skin breakdown, and other complications of immobilization.

SUMMARY

Agitation and delirium are very common in the ICU, where their occurrence puts patients at risk of self-injury and poor clinical outcomes. Available sedation and delirium monitoring instruments allow clinicians to recognize these forms of brain dysfunction. Through a systematic approach, life-threatening problems and other acutely reversible physiologic causes can be rapidly identified and remedied. A strategy that focuses on early liberation from mechanical ventilation and early mobilization can help reduce the burden of delirium. Use of antipsychotics should be reserved for patients who pose an imminent risk to themselves or staff.

KEY POINTS

1. Delirium
2. Agitation
3. Confusion
4. Assessment
5. Risk factors
6. Management
7. Sedation

ANNOTATED REFERENCES

This large cohort study showed that delirium in the ICU was an independent risk factor for death at 6 months and that each day with delirium increased the hazards of dying by 10%. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med 2001;27(5):859-864. (Available at: http://www. aco.org/acgme/education/meded/455/GraduateMedicalEducation/Systemsd/AA-ApprovedPrograms.aspx. Accessed November 12.)

The ICDSC provides health care providers with an easy to use bedside delirium monitoring instrument that can be incorporated into the daily work flow of bedside nurses. It provides the ability to diagnose subsyndromal delirium.

References for this chapter can be found at expertconsult.com.
Critically ill patients frequently experience acute pain, which can have multiple causes in the intensive care unit (ICU) setting including surgical and posttraumatic wounds, the use of invasive monitoring devices and mechanical ventilators, prolonged immobilization, and routine nursing care (e.g., dressing changes). The experience of pain differs among patients, but the physiologic consequences of inadequately treated pain are relatively predictable and potentially deleterious. Some physiologic responses to acute pain and stress are mediated by neuroendocrine activation and increased sympathetic tone. Patients may develop tachycardia, increased myocardial oxygen consumption, immunosuppression, hypercoagulability, persistent catabolism, and numerous other metabolic alterations. Additional morbidity may be incurred by pain-related functional limitations such as impaired pulmonary mechanics or delayed ambulation.

ACUTE PAIN ASSESSMENT

The assessment of acute pain in the ICU can be challenging. Unfortunately, many ICU patients cannot provide full or even partial information regarding their pain. However, the inability of sedated, intubated ICU patients to report pain should not preclude its assessment and management. A number of scales and assessment tools for the evaluation of pain in ICU patients have been developed, such as the visual analog scale, the numeric rating scale, behavioral pain scale, and critical care pain observation scale (Fig. 3-1). In heavily sedated or paralyzed patients, caregivers must use signs of heightened sympathetic activity like hypertension, tachycardia, lacrimation, diaphoresis, and restlessness as surrogate indicators for the presence of pain. Favorable trends in these signs following analgesic administration provide a measure of the success of a given intervention.

OPTIONS FOR ACUTE PAIN THERAPY

Acute pain is triggered by stimulation of peripheral nociceptors in the skin or deeper structures and is a complex process involving multiple mediators at various levels of the neuraxis (Fig. 3-2). Different parts of the pain pathway can be targeted either individually or as part of a comprehensive “multimodal” strategy aimed at multiple sites for additive or synergistic effects. Thus, nociception can be influenced peripherally by the use of nonsteroidal antiinflammatory drugs (NSAIDs) and nerve blocks, at the spinal cord level by the use of epidural or intrathecal medications, and centrally by the use of systemic medications.

Nonsteroidal Antiinflammatory Drugs

Drugs in this class inhibit cyclooxygenase (COX) enzymes, which are involved in synthesis of prostaglandins and related inflammatory mediators in response to injury. COX-1 is a constitutive enzyme that is present in most tissues and, through the production of prostaglandins E2 and I2, serves homeostatic and protective functions. COX-2 is an inducible enzyme that is expressed in response to inflammation. As a class, NSAIDs can cause adverse effects that include gastrointestinal (GI) ulceration and GI bleeding, inhibition of platelet function, renal injury, and bronchospasm in aspirin-sensitive patients (triad of asthma, nasal polyposis, and aspirin allergy).

Ketorolac is one of only two parenteral NSAIDs available in the United States. Although it has been shown to reduce postoperative opioid requirements, prolonged use may be associated with a significant incidence of the aforementioned side effects, primarily GI bleeding and renal injury. Consequently, it is recommended that ketorolac therapy be limited to a maximum of 5 days. In addition, ketorolac, as with all NSAIDs, should be used at decreased dosages or avoided altogether in patients at higher risk of such complications (e.g., advanced age, hypovolemia, or preexisting renal insufficiency).

Intravenous ibuprofen (Caldolor) has recently been approved by the Food and Drug Administration (FDA) as the only other parenteral NSAID for the treatment of pain. It has been demonstrated in several studies to be a safe and well-tolerated adjunctive agent in a multimodal approach of pain management, reducing opioid requirements and decreasing the incidence of opioid-related side effects. As with other nonselective NSAIDs, there is risk of GI bleeding and renal injury.

Due to the concern for an increased risk of cardiovascular thrombotic complications, myocardial infarction, and stroke demonstrated with COX-2 selective NSAIDs, there is a Black Box Warning indicating the use of both intravenous ibuprofen and ketorolac in perioperative coronary artery bypass graft (CABG) patients. In addition, their use is contraindicated in patients with active or recent GI bleeding or perforation. Unfortunately, the unfavorable adverse effect profile of these agents limits their use in the ICU setting.

Acetaminophen is a para-aminophenol derivative with analgesic and antipyretic properties similar to those of aspirin. The mechanism of action of acetaminophen is still poorly defined. Recent evidence has suggested that it may selectively act as an inhibitor of prostaglandin synthesis in the central nervous system (CNS) rather than in the periphery. When combined with opioids, acetaminophen may be a useful adjunct in pain relief, especially as an alternative to NSAIDs in high-risk patients because of the lower incidence of adverse effects.

An intravenous (IV) form of acetaminophen was approved in 2010 for the management of fever and mild to severe pain. Studies have proven it to be safe and effective in the reduction of pain, leading to decreased opioid requirements and fewer opioid-related side effects. Compared head-to-head in the setting of acute pain, IV acetaminophen has been shown to be equal and in some cases even more effective than IV morphine. The increased analgesic effects of IV, compared to oral acetaminophen, likely has to do with more favorable pharmacokinetics and avoidance of the hepatic first pass effect. When compared with oral or rectal acetaminophen in equal doses, intravenous administration results in a more rapid elevation in plasma concentrations and higher peak levels of acetaminophen. In fact, the mean peak concentration after infusion of IV acetaminophen is 70% higher than that seen with an equivalent oral dose. These higher plasma concentrations result in a more rapid and significant diffusion across the blood-brain barrier, as demonstrated by significant differences in the peak and total amount of acetaminophen in the cerebrospinal fluid with intravenous versus oral administration. Although there are concerns about the use of acetaminophen in patients with liver disease, it has proven to be safe even in this population, although...
a reduction of the daily dosage limit is recommended by the manufacturer in cases of mild to moderate hepatic impairment. Its use is contraindicated, however, in cases of severe hepatic impairment.

Opioid Analgesics

This drug class remains the mainstay of ICU analgesia. Although a number of parenteral opioids are available, morphine, hydromorphone, and fentanyl are most commonly used, often as infusions in intubated patients along with a sedative agent. Opioids bind to a variable degree with opioid receptor subtypes (\(\mu \), \(\delta \), \(\kappa \)) located in the brain, spinal cord, and peripheral sites and modulate the transmission and processing of nociceptive signals. The clinical and pharmacologic properties of opioids depend on several variables, including chemical and solubility properties, dosing regimen, patient characteristics (e.g., age, tolerance, hepatic or renal dysfunction), and presence of active metabolites.

Opioids are excellent analgesics, but they are not amnestic agents. As a class they may suppress respiratory drive and promote sedation, GI symptoms (ileus, nausea and vomiting, constipation), urinary retention, pruritus, or hypotension as a result of the ablation of pain-mediated sympathetic stimulation. In actual practice, however, opioids are relatively neutral in their hemodynamic effects, so long as they are used judiciously in euvolemic patients. Of note, morphine additionally causes hypotension by triggering the release of histamine. This side effect, along with its hepatic metabolism to an active compound, morphi-\(\delta \)-glucuronide, which can accumulate in patients with renal insufficiency, are the main disadvantages of morphine when compared with other parenteral opioids.

Opioids are most commonly administered intravenously in critically ill patients and titrated to effect, either on a scheduled, intermit-
tent basis or as a continuous infusion. This strategy avoids concerns regarding unpredictable bioavailability associated with intramuscular, enteral, or transdermal administration and favors more stable analge-
sic drug concentrations. The benefits of administering analgesics in this fashion, however, must be balanced against the possibility of unintentional overdosing resulting in excessive sedation, respiratory depression, and in turn, prolonged intubation. To avoid this problem, scheduled daily interruptions of sedative and analgesic drug infusions, often referred to as “sedation vacations” or “sedation holidays,” are recommended as they have been shown to result in shorter durations of mechanical ventilation and ICU stays. Drugs that are often thought of as short acting, like fentanyl, actually have a markedly prolonged duration of action if given as an infusion, even in patients without significant renal or hepatic dysfunction due to its accumulation in fat (Fig. 3-3). This concept is referred to as the “context-sensitive half-life,” which is defined as the time it takes for the plasma concentration of a drug to decrease by one-half following cessation of a continuous infusion.

Remifentanil is a potent synthetic opioid with a rapid onset and short duration of action, owing to its unique organ-independent
metabolism and the absence of active metabolites or drug accumulation, even following prolonged infusion. Unlike other opioids that rely heavily on hepatic metabolism, remifentanil is rapidly hydrolyzed within a matter of minutes by nonspecific plasma and tissue esterases (not plasma cholinesterase or pseudocholinesterase notably, meaning that patients with atypical cholinesterase do not experience a prolonged duration of action). This rapid hydrolysis also prevents drug accumulation during continuous administration. Furthermore, although its major metabolite is renally eliminated, it is virtually devoid of opioid activity, resulting in a stable pharmacokinetic profile even in the presence of severe renal impairment. All of these qualities result in a drug with an extremely short context-sensitive half-life, irrespective of infusion duration. Although this may be particularly useful in critically ill patients who often have comorbid hepatoportal dysfunction and who require prolonged opioid infusions, there are a couple of drawbacks to this drug that limit its widespread use in the ICU setting: First, its potent nature often leads to dose-dependent hypotension and bradycardia if not carefully titrated. Second, its ultra-short duration of action of several minutes can result in abrupt recurrence of pain after an infusion is stopped, which may result in unwanted acute sympathetic stimulation. This may be particularly pronounced in those with a large pain burden, such as postoperative or trauma patients. Other adverse effects of remifentanil are similar to those of other opioids. Of these, chest wall rigidity resulting in the inability to ventilate is arguably the most worrisome and deserves a brief mention. Although a possible adverse effect of any IV opioid, it may be slightly more common with remifentanil, particularly when it is given as a bolus or infused at higher rates. This can be treated by administering a neuromuscular blocking agent and reducing or discontinuing the infusion.14-16

Ketamine
Ketamine is a well-known general anesthetic and analgesic. With the discovery of the N-methyl-D-aspartate (NMDA) receptor and its links to nociceptive pain transmission and central sensitization, there has been renewed interest in utilizing ketamine as a potential antihyperalgesic agent. Ketamine is a noncompetitive NMDA receptor antagonist. Although high doses (>2 mg/kg) of ketamine have been implicated in causing psychomimetic effects (excessive sedation, cognitive dysfunction, hallucinations, nightmares), subanesthetic or low doses (<1 mg/kg) of ketamine have demonstrated significant analgesic efficacy without these side effects. Furthermore, there is no evidence to indicate that low doses of ketamine exert any adverse pharmacologic effects related to respiration or cardiovascular function. Low doses of ketamine have not been associated with development of nausea, vomiting, urinary retention, or impaired intestinal motility. Ketamine, in combination with IV opioids, has been shown not only to reduce postoperative opioid consumption but also to improve analgesia.5,13

Methodone
The use of methadone in the outpatient setting in treating opioid addiction and providing relief in chronic pain and palliative care is well established.15 Its long duration of action (up to 8 hours) compared to other opioids and its dual effects on both opioid and NMDA receptors make it an ideal agent in these settings. In addition to these features, methadone differs pharmacologically from other opioids in several important ways. Its elimination half-life, which is considerably longer than its duration of action, varies dramatically among individuals from 8 to 90 hours, due largely to its highly lipophilic properties leading to drug accumulation.16 This results in three important considerations regarding drug titration and side effects: First, dosage increases should only be made once every several days, since steady-state plasma concentrations, and therefore full analgesic effects, are not attained until 3 to 5 days after initiation. Second, peak respiratory depressant effects usually occur later and last longer than the peak analgesic effect, especially during the drug initiation phase. Third, when attempting to discontinue the drug after long-term use the dose should be gradually tapered off, as abrupt discontinuation can lead to withdrawal symptoms. These factors should be kept in mind when dosage adjustments are being made. The delayed respiratory depressant effect is due to drug accumulation rather than the presence of active metabolites as with morphine, since methadone is hepatically metabolized to inactive metabolites. Other than respiratory depression, the most commonly seen serious adverse effect is QT prolongation, which makes regular monitoring of the EKG necessary especially during initiation of therapy, dosage increases, or addition of other medications with QT prolonging effects. Although traditionally used for chronic pain and addiction, there is recent interest in the use of this drug acutely in the inpatient setting in patients who are displaying signs of either opioid tolerance or opioid-induced hyperalgesia.

OPIOID TOLERANCE AND OPIOID-INDUCED HYPERALGESIA

Although at first glance their presentation is quite similar, it is clinically important to distinguish these two situations in terms of the differences in their treatment. Both may result from high-dose opioid consumption and present with uncontrolled pain despite increasing opioid doses. The difference, however, is that patients with opioid-induced hyperalgesia display signs of increasing sensitivity to painful stimuli (hyperalgesia), and the pain is more diffuse (allodynia) and present in an area or distribution that is beyond the initial site. Differentiation of these two scenarios can be difficult, and consultation with a pain management specialist may be necessary.

Opioid tolerance results from repeated exposure to an opioid causing a decreased therapeutic effect through desensitization of anti-nociceptive mechanisms. Treatment options involve further up titration of the current opioid regimen, the addition of adjunctive agents with different mechanisms of pain control in a multimodal approach, and attempting an opioid switch or “rotation” to a different opioid analgesic. Although there is debate about the efficacy of the latter approach, methadone in particular has demonstrated particular efficacy when attempting an opioid switch.19,20 This is likely due to its dual mechanism of action as an opioid agonist and NMDA receptor antagonist, a quality that is unique among other opioids. Its action at the NMDA receptor not only provides an additional mechanism for pain control but also attenuates hyperalgesia, which arguably also plays a part in many cases of opioid tolerance.9,20

Opioid-induced hyperalgesia, on the other hand, results from repeated exposure to an opioid causing increased pain due to the central sensitization of pronociceptive mechanisms. This has been termed the wind-up phenomenon, and presents a challenging problem for the clinician. As its mechanism is different from opioid tolerance, the treatment also differs. Rather than up titration of opioid agents, attempts should be made to reduce and even discontinue them. This is accomplished through the addition of nonopioid analgesics and through the use of NMDA-receptor antagonists, in particular ketamine. The NMDA receptor is a ligand-gated calcium channel that plays a major role in the development of central sensitization. Through antagonism of this receptor, ketamine has been shown to reverse this phenomenon and effectively treat the hyperalgesia.19,20 In addition to its effectiveness in treating opioid-induced hyperalgesia, the use of low-dose ketamine in the treatment of acute pain has been shown to reduce opioid requirements, as previously discussed. This may be particularly beneficial in the postoperative setting.3 The opioid-sparing effect of ketamine is partly due to its own intrinsic analgesic effect, but when combined with opioid treatment regimens, it is also likely due to prevention of hyperalgesia.19,21 In addition to ketamine, methadone has been shown to improve opioid-induced hyperalgesia, likely in part due to its own action at the NMDA receptor.22 Initiation of methadone in this setting may also facilitate the tapering and removal of other opioid agents contributing to the hyperalgesia.
Tramadol

Tramadol is a centrally acting synthetic analgesic with two distinct mechanisms of action: It is a weak μ-opioid agonist and a reuptake inhibitor of norepinephrine and, to a lesser extent, serotonin. This results in augmentation of descending inhibitory pathways of pain control. Tramadol has proven to be an effective analgesic, especially when combined with acetaminophen, with fewer opioid-related side effects, most notably gastrointestinal.21-24 Tapentadol is a racemic mixture of two enantiomers with different pharmacologic effects. One isomer is responsible for the norepinephrine effect and the other the serotonin effect. In addition, its μ-opioid effect is dependent on metabolism by P4502D6 enzyme to an active metabolite. Unfortunately, 5% to 15% of the population are poor metabolizers.25

Tapentadol is a newer agent with a similar dual mechanism of action as a μ-opioid agonist and a norepinephrine uptake inhibitor. Unlike tramadol, it does not require metabolic activation and is a nonracemic molecule, only affecting the reuptake of norepinephrine. These features may increase the efficacy of this agent compared to tramadol. Although tapentadol has 20 times less affinity for the μ-opioid receptor than morphine, it has been demonstrated to have an analgesic effect only three times less than morphine, which is likely explained by its action on norepinephrine.26 When compared with several opioid analogs including oxycodone in the setting of both acute and chronic pain, tapentadol has shown comparable efficacy with fewer GI adverse effects.27-30

Gabapentin

The gabapentanoids gabapentin and pregabalin are analogs of γ-aminobutyric acid (GABA). Although initially developed as antiepileptic agents, an indication for which they have not shown great efficacy, these agents have become well established for the long-term treatment of chronic neuropathic pain. Although not completely understood, their mechanism of action involves binding to voltage-gated calcium channels in the central nervous system, downregulating their action and subsequently decreasing neurotransmitter release. This results in inhibition of central sensitization and hyperalgesia, which is responsible for the development of chronic neuropathic pain. Recent studies, however, have investigated the use of these agents as an adjunct to opioid analgesics in the treatment of acute pain, in particular postsurgical pain.

A single preoperative dose of gabapentin has been shown to improve postoperative pain scores and decrease postoperative opioid requirements in a variety of surgical populations.31,32 This is theorized to be due to the prevention of surgery-induced central sensitization, which is believed to also play a significant role in acute postoperative pain. There is also evidence that continuation of gabapentanoids in the postoperative period may help to provide increased pain relief and reduce opioid requirements.31,32

Studies using pregabalin in the treatment of acute postoperative pain have demonstrated similar efficacy with this agent.33,34

Alpha-2 Adrenergic Agonists

In addition to the opiate system, alpha-2 (α2) adrenergic activation represents another inherent pain-control network in the CNS. The α2 adrenergic receptor exists in the substantia gelatinosa of the dorsal horn, which is a primary site of action by which this class of drugs can inhibit somatic pain. This receptor system also exists in the brain, where its stimulation can produce sedation. Cardiovascular depression from α2 adrenergic agonists can occur at both brain and spinal cord sites. These side effects of sedation and sympathetic inhibition limit α2 adrenergic agonists to only an adjuvant role as analgesics.

Clonidine was originally used to control blood pressure and heart rate. It binds to α2 adrenergic and imidazole receptors in the CNS. It has been hypothesized that clonidine acts at α2 adrenergic receptors in the spinal cord to stimulate acetylcholine release, which acts on both muscarinic and nicotinic receptor subtypes for postoperative pain relief. Clonidine can be administered by oral, IV, or transdermal routes.

A newer centrally acting α2 agonist is the parenteral agent dexmedetomidine, which possesses a higher affinity for the α2 receptor than clonidine. Although FDA approved only for sedation, it is being studied as an adjunctive analgesic based on its mechanism and several studies that have demonstrated decreased decreased opioid requirements and improved pain scores with its use.35,36

Neuraxial Analgesic Techniques

The administration of narcotics, local anesthetics, and other agents via intrathecal or epidural catheters targets the processing of pain signals at the level of the spinal cord or nerve root. The use of epidural catheters for regional analgesia in ICU patients may be quite useful, assuming that the pain pattern is regionalized and that there are no contraindications to catheter placement (e.g., coagulopathy, uncontrollable infection, unstable skeletal fractures). In some patients, epidural analgesia may be preferable to IV-administered medications because this approach affords dense regional pain control while largely avoiding the sedative and respiratory side effects of systemic medications. In trauma patients with rib fractures and postsurgical thoracotomy patients, the use of epidural catheters may be particularly helpful in achieving pain control while minimizing respiratory depression in a patient population that is prone to develop respiratory insufficiency and failure due to hypoventilation as a result of uncontrolled pain.

Peripheral Nerve Blocks

Peripheral nerve blocks are an attractive method of providing postoperative analgesia for many orthopedic surgical procedures. The use of peripheral nerve blocks achieved by either a single injection or by continuous infusion via a catheter may provide superior analgesia, reduce opioid consumption, and reduce opioid-related side effects. Unfortunately, this technique is not commonly used in the ICU setting. Due to the aforementioned benefits, however, it should be strongly considered as an alternative to opioids when appropriate.

Multimodal Analgesia

Multimodal analgesia is a concept that was developed as a technique to improve the quality of pain relief while minimizing the adverse effects of opioids. The idea is to use a combination of agents with different mechanisms in an additive and often synergistic effect to achieve adequate analgesia with lower doses of each agent. Utilizing this concept in the ICU can be vitally important, since the adverse effects of drugs are often magnified in the critically ill, especially in the setting of polypharmacy. As we increase our understanding of the etiology of pain, newer agents with different mechanisms of action are being developed, and hopefully one day the concept of treating pain with several agents in a multimodal approach will be common practice in every clinical setting.

The author analyzes the recent DOLOREA study out of France and concludes that pain assessment seems to reduce sedative drug dosing, allowing for objective pain evaluation and analgesic drug dosing based on patient report, reducing ventilator days and duration of ICU stay.

This is a prospective, multicenter, observational study of mechanically ventilated patients who received analgesia on day 2 of their ICU stay. Pain assessment in this ICU population was associated with a reduction in the duration of ventilator support and ICU stay. This might be related to higher concomitant rates of sedation assessments and a restricted use of hypnotic drugs when pain was assessed.

The authors reviewed 236 articles, all randomized control trials that compared continuous peripheral nerve block (CPNB) analgesia with opioids for the management of postoperative pain. CPNB analgesia, regardless of catheter location, provided superior postoperative analgesia and fewer opioid-related side effects when compared with opioid analgesia.

An up-to-date review of COX-2 inhibitors for analgesia in the postoperative period.

A review of pain assessment and analgesic therapy in the critically ill patient, promulgated by a task force of the American College of Critical Care Medicine of the Society of Critical Care Medicine. Recommendations are made (and graded) based on a critical evaluation of the literature.

A classic study showing that the daily interruption of sedatives and analgesics can decrease the duration of mechanical ventilation.

References for this chapter can be found at expertconsult.com.
Fever is defined as an increase in body temperature. Normal body temperature is 36.8°C ± 0.4°C. Normally, body temperature varies in a circadian fashion by about 0.6°C, being lowest in the morning and highest in the late afternoon or early evening. A core body temperature of ≥38.3°C is generally accepted to represent fever. In 2008, a task force from the Society of Critical Care Medicine and the Infectious Disease Society of America concluded that “because fever can have many infectious and noninfectious etiologies, a new fever in a patient in the intensive care unit should trigger a careful clinical assessment rather than automatic orders for laboratory and radiologic tests. A cost-conscious approach to obtaining cultures and imaging studies should be undertaken if indicated after a clinical evaluation.”

Fever is a common finding in patients admitted to an intensive care unit (ICU), being present at one time or another in almost 50% of cases. Moreover, fever is an independent risk factor for mortality in patients admitted to ICUs.

The pathogenesis of fever triggered by infectious agents is complex. Classically, fever was thought to be triggered by the peripheral release of various cytokines—notably, interleukin 1-beta (IL-1β), tumor necrosis factor (TNF), IL-6, and possibly interferon-alpha (IFN-α)—that are capable of up-regulating the expression of two key enzymes that are involved in the production of prostaglandin E$_i$ (PGE$_i$), namely: cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1). The central role of PGE$_i$ in the pathogenesis of fever is supported by the following findings: first, febrile responses to lipopolysaccharide (LPS) and other inflammatory stimuli are depressed by drugs that inhibit PG synthesis; second, mice that are genetically deficient in either COX-2 or mPGES-1 do not become febrile after an LPS challenge. Although PGE$_i$ can be produced by immunostimulated macrophages in the periphery, the PGE$_i$ that is responsible for fever is probably generated in the central nervous system (CNS). PGE$_i$ binds to prostaglandin receptors located on a cluster of neurons in the preoptic region of the hypothalamus. Although there are four subtypes of PGE$_i$ receptors, only one, PGE$_i$ receptor 3 (EPR3), is required for the development of fever in response to IL-1β, LPS, or PGE$_i$.

The activation of EPR3 triggers a number of neurohumoral and physiologic changes that lead to increased body temperature. The antipyretic effects of various nonsteroidal antiinflammatory drugs (NSAIDs), such as aspirin and ibuprofen, are due to the inhibition of COX-2-dependent PGE$_i$ biosynthesis in the CNS. The mechanism by which acetaminophen reduces fever might involve COX-2 inhibition in the CNS, but it remains controversial and poorly understood.

The classical view of the pathogenesis of fever associated with infection has been updated by the proposal that pyrogenic stimuli trigger the activation of vagal afferent signals originating from the liver and travelling to the nucleus tractus solitarius in the brainstem. These signals are subsequently transmitted to the hypothalamus, where an early increase in temperature is mediated in a PGE$_i$-independent fashion via an α$_i$-adrenergic receptor–dependent pathway. A secondary (delayed) increase in temperature is mediated via an α$_i$-adrenergic–dependent pathway that leads to an increase in PGE$_i$ production secondary to the increased expression of COX-2.

Body temperature can be measured using an oral, axillary, or rectal mercury-filled glass thermometer. These traditional approaches, however, have been largely replaced by a variety of safer and more environmentally friendly methods that use thermistors located on catheters or probes placed in the pulmonary artery, distal esophagus, urinary bladder, or external ear canal. Infrared detectors can be used to measure tympanic membrane temperature. Forehead skin temperature can be measured using a temperature-sensitive patch.

Fever is a cardinal sign of infection. Accordingly, any new onset of fever should trigger a careful diagnostic evaluation for investigating the source of infection. The diagnostic evaluation should be thorough and tailored to the recent history of the patient. For example, the possibility of a CNS infection should receive greater attention in a patient with recent or ongoing CNS instrumentation. By the same token, if a patient recently underwent a gastrointestinal surgical procedure, the clinician should have a high index of suspicion for an intraabdominal source of infection. Key elements in the assessment of new-onset fever in the ICU are listed in Box 4-1. Common sources of infection in ICU patients are listed in Box 4-2.

Although fever in the ICU is most commonly due to infection, myriad noninfectious causes of systemic inflammation (Box 4-3) can also result in hyperthermia. Some authors claim that noninfectious causes of fever rarely result in a core temperature above 38.9°C, but rigorous data in support of this view are lacking. Still, infections are rarely if ever associated with core temperatures over 41.1°C. When the core temperature is this high, the clinician should suspect malignant hyperthermia, neuroleptic malignant syndrome, or heat stroke.

On theoretical grounds, the routine treatment of fever would seem to be ill-advised. Hyperthermia is an adaptive response that enhances the host’s ability to fight infection. In addition, body temperature becomes an unreliable clinical parameter when patients are receiving antipyretic therapy. Still, currently available data are insufficient to determine whether fever should be routinely treated in ICU patients. In one randomized clinical trial that enrolled 82 surgical ICU patients, the protocolized administration of acetaminophen when body temperature exceeded 38.5°C was compared to the treatment of fever only when temperature exceeded 40°C. More aggressive treatment of fever in this study was associated with a trend toward higher mortality (P = 0.06). In contrast to these findings, Schortgen et al. randomized febrile patients with septic shock requiring vasopressors, mechanical ventilation, and sedation to either external cooling (n = 101) for 48 hours to achieve normothermia (36.5°C to 37°C) or no external cooling (n = 99). Day 14 mortality was significantly lower in the group randomized to external cooling (P = 0.013). In another study, 120 febrile adults (not all critically ill) were randomized to treatment with intravenous ibuprofen (100, 200, or 400 mg) or placebo every 4 hours for a total of 6 doses. There was no significant difference in the rate of serious adverse events, such as acute kidney injury, bleeding, or mortality, between the groups.

Although it is unclear whether hyperthermia should be routinely treated in ICU patients, antipyretics should be administered to selected patients with fever, notably those with acute coronary syndromes (i.e., myocardial infarction or unstable angina), because the tachycardia that usually accompanies the febrile response can exacerbate imbalances between myocardial oxygen delivery and demand. Febrile patients with head trauma, subarachnoid hemorrhage, or stroke should receive cooling (using antipyretics and/or external cooling devices) to prevent temperature-related increases in cerebral oxygen utilization. Children with temperatures higher than 40°C or with a history of seizures should also be treated.
Hypothermia blankets are often used to lower the core temperature in febrile ICU patients, although these blankets are no more effective for cooling patients than antipyretic agents. Hypothermia blankets can cause large temperature fluctuations and are associated with rebound hyperthermia when removed. Additionally, external cooling can augment hypermetabolism and actually promote persistent fever. Lenhardt and colleagues demonstrated that active external cooling in patients with induced fever increased oxygen consumption by 35%.

A reasonable approach for evaluating fever in ICU patients was described by Marik. Blood cultures should be obtained whenever an ICU patient develops a new fever. The sensitivity of blood cultures for detecting bacteremia depends to a large extent on the volume of blood inoculated into culture media. Whenever possible, at least 10 to 15 mL of blood should be withdrawn and inoculated into 2 or 3 bottles or tubes at a ratio of 1 mL of blood per 5 mL of medium.

A comprehensive physical examination should be carried out, and a chest X-ray obtained and reviewed. Noninfectious causes of fever should be excluded. In patients with an obvious focus of infection, a directed diagnostic evaluation is necessary. However, if there is no obvious source of infection and the patient is not clinically deteriorating, it is reasonable to obtain blood cultures and observe the patient for 48 hours before ordering additional diagnostic studies or starting empirical antibiotics. This approach is not reasonable, however, if new fever is accompanied by other signs of worsening clinical status such as arterial hypotension, oliguria, increasing confusion, rising serum lactate concentration, falling platelet count, or worsening coagulopathy. Nor is this approach reasonable if the core temperature is above 39°C but below 41.1°C. Patients in this category should receive empirical antimicrobial chemotherapy while aggressive attempts are made to diagnose the source of infection. All febrile neutropenic patients should receive broad-spectrum empirical antimicrobial chemotherapy after appropriate cultures are obtained.

Intravascular catheters are commonly suspected as a source of infection and fever in ICU patients and can cause fever due to localized (or other) ominous signs are present, the most prudent course of action is to remove all vascular access catheters, including tunneled and/or cuffed devices. In many institutions, routine culturing of catheter tips (using semiquantitative methods on solid media) is no longer thought to be cost effective because the results of such studies rarely change the subsequent therapy strategy.

BOX 4-1 Key Elements in the Evaluation of New-Onset Fever in ICU Patients

- Be familiar with the patient’s history. Pay particular attention to possible predisposing causes of fever.
- Perform a careful physical examination. Pay particular attention to surgical wounds and vascular access sites. Look for evidence of pressure-induced skin ulceration. In patients with recent median sternotomy, evaluate the stability of the chest closure. Perform a careful abdominal examination.
- Obtain or review a recent chest X-ray, looking for evidence of new infiltrates or effusions.
- Obtain appropriate laboratory studies. At a minimum, these studies should include a peripheral white blood cell count and cultures of blood and urine. If the patient is endotracheally intubated or has a tracheostomy, obtain a sample of sputum for Gram stain. In some centers, sputum is routinely cultured. In other centers, bronchoalveolar lavage or bronchial brushing for quantitative microbiology is performed using blind or bronchoscopic methods.
- In patients receiving antibiotics for more than 3 days, a stool sample should be analyzed for the presence of *Clostridium difficile* toxin, unless a high sensitivity assay for the toxin was performed recently and was negative.
- More extensive diagnostic evaluation should be considered in a graded fashion based on history, physical examination findings, laboratory results, persistence of fever despite presumably appropriate antimicrobial chemotherapy, or clinical instability. These additional tests and procedures include diagnostic thoracentesis, paracentesis, and lumbar puncture. Imaging studies should be considered, including abdominal or cardiac ultrasonography and head, chest, or abdominal computed tomography.

BOX 4-2 Common Infectious Causes of Fever

CENTRAL NERVOUS SYSTEM
- Meningitis
- Encephalitis
- Brain abscess
- Epidural abscess

HEAD AND NECK
- Acute suppurative parotitis
- Acute sinusitis
- Parapharyngeal and retropharyngeal space infections
- Acute suppurative otitis media

CARDIOVASCULAR
- Catheter-related infection
- Endocarditis

PULMONARY AND MEDIASTINAL
- Pneumonia
- Empyema
- Mediastinitis

HEPATOBILIARY AND GASTROINTESTINAL
- Diverticulitis
- Appendicitis
- Peritonitis (spontaneous or secondary)
- Intraabdominal abscess
- Perirectal abscess
- Infected pancreatitis
- Acute cholecystitis
- Cholangitis
- Hepatic abscess
- Acute viral hepatitis

GENITOURINARY
- Bacterial or fungal cystitis
- Pyelonephritis
- Perinephric abscess
- Tubo-ovarian abscess
- Endometritis
- Prostatitis

BREAST
- Mastitis
- Breast abscess

CUTANEOUS AND MUSCULAR
- Cellulitis
- Suppurative wound infection
- Necrotizing fasciitis
- Bacterial myositis or myonecrosis
- Herpes zoster

OSSEOUS
- Osteomyelitis
BOX 4-3 Noninfectious Causes of Fever

<table>
<thead>
<tr>
<th>CENTRAL NERVOUS SYSTEM</th>
<th>ENDOCRINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subarachnoid hemorrhage</td>
<td>Hyperthyroidism</td>
</tr>
<tr>
<td>Intracerebral hemorrhage</td>
<td>Adrenal insufficiency</td>
</tr>
<tr>
<td>Infarction</td>
<td>Pheochromocytoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARDIAC</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarction</td>
<td>Drug reactions (“drug fever”)</td>
</tr>
<tr>
<td>Pericarditis</td>
<td>Transfusion reactions</td>
</tr>
</tbody>
</table>

PULMONARY		\n	-----------	--------
Atelectasis		Neoplasms (especially lymphoma, hepatoma, and renal cell carcinoma)		
Pulmonary embolism		Malignant hyperthermia		
Fibroproliferative phase of acute respiratory distress syndrome		Neuroleptic malignant syndrome		

HEPATOBILIARY AND GASTROINTESTINAL		\n	---------------------------------	-------
Acute cholecystitis		Serotonin syndrome		
Acute pancreatitis		Opioid withdrawal syndrome		
Active Crohn’s disease		Ethanol withdrawal syndrome		
Toxic megacolon		Transient endotoxemia or bacteremia associated with procedures		
Alcoholic hepatitis		Devitalized tissue secondary to trauma		

RHEUMATOLOGIC SYNDROMES		\n	------------------------	-------	
Vasculitides (e.g., polyarteritis nodosa, temporal arteritis, Wegener’s syndrome)		Hematoma			
Systemic lupus erythematosus		\n	Rheumatoid arthritis		
Goodpasture’s syndrome					

Fever is a common feature of the systemic inflammatory response syndrome (SIRS), irrespective of whether the underlying cause is infectious or noninfectious. Procalcitonin, a precursor of the polypeptide hormone, calcitonin, has been studied extensively as a circulating marker that can be used to differentiate infectious from noninfectious causes of SIRS in ICU or emergency department patients. A recent meta-analysis concluded that “procalcitonin represents a good biological diagnostic marker for sepsis, severe sepsis, or septic shock.” Several randomized controlled trials have investigated the feasibility of using the results of procalcitonin assays for making decisions regarding starting or stopping antibiotics for patients with proven or suspected respiratory infections. According to a recent meta-analysis of these studies, the “use of procalcitonin to guide the initiation and duration of antibiotic treatment was not associated with higher mortality rates or treatment failure, [and] antibiotic consumption was significantly reduced.” Thus, measurements of procalcitonin can be a useful adjunct for the evaluation of fever in ICU patients, but this assay is not a replacement for other key diagnostic modalities: careful physical examination, chest X-ray, assessment of sputum Gram stain findings, and appropriate cultures of blood, urine, sputum, or bronchoalveolar lavage fluid.

References for this chapter can be found at expertconsult.com.
REFERENCES

