

Oxford Textbook of

Obstetrics and Gynaecology

EDITED BY

Sabaratnam Arulkumaran William Ledger Lynette Denny Stergios Doumouchtsis

Oxford Textbook of

Obstetrics and Gynaecology

Oxford Textbook of

Obstetrics and Gynaecology

Sabaratnam Arulkumaran

Foundation Professor of Obstetrics & Gynaecology, University of Nicosia, Cyprus Professor Emeritus of Obstetrics and Gynaecology, St George's University of London, London, United Kingdom
Visiting Professor, Institute of Global Health, Imperial College, London

William Ledger

Professor of Obstetrics and Gynaecology, University of New South Wales, Director of Reproductive Medicine, Royal Hospital for Women, Sydney, Australia

Lynette Denny

Professor and Chair, Department of Obstetrics & Gynaecology, University of Cape Town/Groote Schuur Hospital, Cape Town, South Africa Director, South African Medical Research Council, Gynaecological Cancer Research Centre

Stergios Doumouchtsis

Consultant Obstetrician Gynaecologist and Urogynaecologist,
Epsom and St Helier University Hospitals NHS Trust, United Kingdom
Honorary Senior Lecturer, St George's University of London
Visiting Professor, University of Athens, School of Health Sciences, Department of Medicine
Associate Clinical Professor, American University of the Caribbean, School of Medicine

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Oxford University Press 2020

The moral rights of the authors have been asserted

First Edition published in 2020

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data Data available

Library of Congress Control Number: 2019946544

ISBN 978-0-19-876636-0

Printed in Great Britain by Bell & Bain Ltd., Glasgow

Oxford University Press makes no representation, express or implied, that the drug dosages in this book are correct. Readers must therefore always check the product information and clinical procedures with the most up-to-date published product information and data sheets provided by the manufacturers and the most recent codes of conduct and safety regulations. The authors and the publishers do not accept responsibility or legal liability for any errors in the text or for the misuse or misapplication of material in this work. Except where otherwise stated, drug dosages and recommendations are for the non-pregnant adult who is not breast-feeding

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Preface

This comprehensive text book of Obstetrics and Gynaecology consists of 72 chapters that spans over 900 pages. It has 12 subsections for easy navigation by the reader. The book covers all of the important aspects of the subject. Such comprehensive coverage was possible due to the International collaboration of hundreds of world renowned authors. We, as editors of the book, are most grateful to them. The authors are from various countries and have provided the knowledge based on available latest evidence in the literature and guidelines from well recognised National and International Professional organisations.

The editors have been selected to provide their expertise in the areas of feto-maternal medicine, reproductive medicine, uro and general gynaecology and gynaecological oncology. They are from the United Kingdom, Australia and South Africa and hold or have held responsible academic positions and have published extensively. They have contributed significantly to teaching, research and clinical practice. The editors have published books in their own rights and have written for and overseen the production of this book with the

benefit of their vast experience. We have given the liberty to individual authors to interpret the evidence in their area of expertise and to provide opinions and advice where evidence is lacking.

The production of the book has been a huge undertaking, and has taken significant time from the submission of the manuscripts to final production. However our authors have been able to update their chapters to circumvent their content becoming out of date. The editors and the publishers are most grateful to them for their effort. This book will be the comprehensive text in Obstetrics and Gynaecology for consultants, postgraduates, midwives, nurses and allied health specialists. We would like to hear your comments and feedback so that we can correct or update the text in the reprint or the next edition.

Sabaratnam Arulkumaran William Ledger Lynette Denny Stergios Doumouchtsis September 2019

Contents

Abbreviations	χİ
Contributors >	(V

SECTION 1

Basics in Obstetrics and Gynaecology

- 1. Basic science in obstetrics and gynaecology 3 Stergios Doumouchtsis
- 2. Ethics in obstetrics and gynaecology 33 Frank A. Chervenak and Laurence B. McCullough
- 3. Clinical anatomy of the pelvis and the reproductive organs 44

 Thomas Ind
- Genetics for the obstetrician and gynaecologist 55
 Adonis Joannides
- 5. **Clinical governance** 72 *Leroy C. Edozien*
- 6. **Preconceptional medicine** 83 Carmen Binding and Mahantesh Karoshi
- 7. Obesity in obstetric and gynaecological practice 96

Sukhwinder Sahota and Tahir Mahmood

SECTION 2

Fetomaternal Medicine

- 8. **Maternal physiology** 109
 Nicola Vousden and Andrew H. Shennan
- 9. **The placenta** 120 Eric Jauniaux, Amarnath Bhide, and Graham J. Burton
- 10. **Fetal growth** 133

 Jane E. Hirst and Aris T. Papageorghiou

- 11. **Prenatal diagnosis** 141

 Ana Piñas Carrillo and Amarnath Bhide
- 12. Cardiac disease in pregnancy 151 *Philip Steer*
- 13. **Diabetes in pregnancy** 163 *Michael Permezel and Alexis Shub*
- 14. **Renal disease in pregnancy** 170
- 15. **Haematological disorders in pregnancy** 186 Amanda Ali and Hassan Shehata
- 16. Thrombosis and embolism in pregnancy 206 Ian A. Greer
- 17. General and specific infections in pregnancy including immunization 213Austin Ugwumadu
- 18. Psychiatric disorders in pregnancy and the postpartum 233
 Arianna Di Florio and Ian Jones
- 19. **Fetal therapy** 243

 Caitriona Monaghan and Basky Thilaganathan
- 20. **Multiple pregnancy** 253
 Surabhi Nanda and James P. Neilson
- 21. **Hypertension** 268

 Laura A. Magee and Peter von Dadelszen
- 22. Antepartum haemorrhage 284 Gbemisola Okunoye and Justin C. Konje
- 23. Liver and endocrine diseases in pregnancy 295

 Catherine Williamson
- 24. **Neurological disorders in pregnancy** 306 *Judith N. Wagner and Tim J. von Oertzen*
- 25. **Respiratory diseases in pregnancy** 320 Catherine Nelson-Piercy and Stephen Lapinsky

SECTION 3

Management of Labour

- 26. **The management of labour** 331 Devendra Kanagalingam
- **27. Fetal monitoring during labour** 339 *Vikram Sinai Talaulikar and Sabaratnam Arulkumaran*
- 28. **Obstetric analgesia and anaesthesia** 352 *Sohail Bampoe and Anthony Addei*
- 29. **Obstetric emergencies** 358

 Kiren Ghaq, Cathy Winter, and Tim Draycott
- 30. **Preterm birth** 374
 Angharad Care and Zarko Alfirevic
- 31. **Prolonged pregnancy** 389 *Kate F. Walker and Jim G. Thornton*
- 32. Malpresentation, malposition, and cephalopelvic disproportion 395

Deirdre J. Murphy

- 33. **Obstetric procedures** 407

 Yvonne Kwan Yue Cheng and Tak Yeung Leung
- 34. **Stillbirth** 422

 David A. Ellwood and Vicki Flenady
- 35. Postpartum care and problems in the puerperium 435
 Stephen J. Robson
- 36. **Induction of labour** 447 Andrew Weeks and Julia P. Polk

SECTION 4

Neonatal Care and Neonatal Problems

37. **Neonatal care and neonatal problems** 461 *Vimal Vasu and Neena Modi*

SECTION 5

Gynaecological Problems and Early Pregnancy Loss

38. **Miscarriage and recurrent miscarriage** 477
Vikram Sinai Talaulikar and Mushi Matjila

- 39. **Ectopic pregnancy** 489

 Mayank Madhra and Andrew W. Horne
- **40. The menstrual cycle** 500 Lucy H.R. Whitaker, Karolina Skorupskaite, Jacqueline A. Maybin, and Hilary O.D. Critchley
- 41. Menstrual disorders, amenorrhea, and dysmenorrhea 511

 Jan S. Fraser and Marina Berbic
- 42. **Polycystic ovary syndrome** 528 *Zhongwei Huang and Eu Leong Yong*
- 43. **Pelvic inflammatory disease** 536 Gillian Dean and Jonathan Ross
- **44. Chronic pelvic pain** 550

 Jacqueline Pui Wah Chung and Tin Chiu Li
- 45. **Endometriosis** 560
 Arne Vanhie and Thomas D'Hooghe
- 46. **Menopause** 576 *Jenifer Sassarini and Mary Ann Lumsden*

SECTION 6

Surgical Procedures and Postoperative Care

- **47. Laparoscopy** 587 Stephanie S. Andriputri, Stephen D. Lyons, and Jason A. Abbott
- 48. **Hysteroscopy** 597
 O.A. O'Donovan and Peter I. O'Donovan

SECTION 7

Benign Disease of the Uterus

49. **Benign disease of the uterus** 609 Sahana Gupta and Isaac Manyonda

SECTION 8

Benign Disease of the Vulva

50. **Benign disease of the vulva** 627 Rosalind Simpson and David Nunns

SECTION 9

Reproductive Medicine

- 51. **Infertility** 639 Smriti Bhatta and Siladitya Bhattacharya
- 52. **Assisted reproduction** 655 William Ledger

SECTION 10

Sexual and Reproductive Care

- 53. **Contraception** 665

 Zephne M. van der Spuy and Petrus S. Steyn
- 54. **Termination of pregnancy** 678

 Hang Wun Raymond Li and Pak Chung Ho
- 55. **Violence against women and girls** 684

 Tonye Wokoma and Stephen Lindow

SECTION 11

Urogynaecology and Pelvic Floor Disorders

- 56. **Pelvic organ prolapse** 695
 Suneetha Rachaneni, Anupreet Dua, and Robert Freeman
- 57. **Urinary incontinence** 706 *Jay Iyer and Ajay Rane*
- 58. Faecal incontinence and anorectal dysfunction 716

 Karen Nugent
- 59. **Childbirth trauma** 727 *Stergios Doumouchtsis*
- 60. **Female sexual dysfunction** 743 *Ganesh Adaikan*

SECTION 12

Gynaecological Oncology

61. Cancer screening and prevention in gynaecology 755

Lynette Denny and Rengaswamy Sankaranarayan

62. Premalignant and malignant disease of the cervix 766

Walter Prendiville

63. Uterine cancer 777

Nomonde H. Mbatani and Dominic G.D. Richards

64. Ovarian, fallopian tube, and peritoneal cancer 787

Jonathan A. Ledermann and Christina Fotopoulou

65. Premalignant and malignant disease of the vulva and vagina 797

Linda Rogers, Maaike Oonk, and Ate van der Zee

- 66. **Gestational trophoblastic disease** 809 Hextan Y.S. Ngan, Karen K.L. Chan, and Siew-Fei Ngu
- 67. Chemotherapy and biological, targeted, and immune therapies in gynaecological cancers 817
 Stephanie Lheureux and Amit M. Oza
- 68. Radiation therapy in the management of gynaecological cancer 832

 Anthony Fyles, Anuja Jhingran, David Gaffney, Dustin Boothe,
- 69. **Palliative care** 844

 Joanna M. Cain and Shelley M. Kibel

Marco Carlone, and Tim Craig

- 70. Pathology of tumours of the female genital tract 854

 Jaime Prat
- 71. Premalignant disease of the genital tract in pregnancy 867

 Andy Nordin and Manas Chakrabarti
- 72. Cancer in pregnancy 874

 Matthys Hendrik Botha

Index 879

Abbreviations

2D	two-dimensional	СНВ	complete heart block
3D	three-dimensional	CHD	congenital heart disease
5-FU	5-fluorouracil	CI	confidence interval
ABC	airway, breathing, and circulation	CIN	cervical intraepithelial neoplasia
ABPM	ambulatory blood pressure monitoring	CIS	carcinoma in situ
AC	abdominal circumference	CKI	chronic kidney injury
ACA	anticardiolipin antibodies	CL	cervical length
ACE	angiotensin-converting enzyme	CNV	copy number variant
AChR	acetylcholine receptor	COC	combined oral contraceptive
ACOG	American College of Obstetrics and Gynecologists	COX	cyclooxygenase
ACTH	adrenocorticotropic hormone	CPD	cephalopelvic disproportion
ADPKD	autosomal dominant polycystic kidney disease	CPR	cardiopulmonary resuscitation
AED	antiepileptic drug	CRH	corticotropin-releasing hormone
AFC	antral follicle count	CRL	crown-rump length
AFLP	acute fatty liver of pregnancy	CSF	cerebrospinal fluid
aHUS	atypical haemolytic uraemic syndrome	CSP	cavum septum pellucidum
AI	aromatase inhibitor	CT	computed tomography
AIDS	acquired immunodeficiency syndrome	CTG	cardiotocography
AIP	abnormality invasive placenta	CTPA	computed tomography pulmonary angiography
AKI	acute kidney injury	CVS	chorionic villus sampling
ALT	alanine aminotransferase	CVT	cerebral venous thrombosis
AMH	anti-Mullerian hormone	D&E	dilatation and evacuation
AML	active management of labour	DFM	decreased fetal movement
aOR	adjusted odds ratio	DHEA	dehydroepiandrosterone
AP	anteroposterior	DIC	disseminated intravascular coagulation
APC	antigen-presenting cell	DSM-5	Diagnostic and Statistical Manual of Mental Disorders,
APH	antepartum haemorrhage		5th edition
APS	antiphospholipid syndrome	dVIN	differentiated vulval intraepithelial neoplasia
ARDS	acute respiratory distress syndrome	EC	emergency contraceptive
ARM	artificial rupture of membranes	ECG	electrocardiogram
ARV	assisted reproductive technology <i>or</i> antiretroviral	ECV	external cephalic version
	therapy	EFI	Endometriosis Fertility Index
ASIS	anterior superior iliac spine	EFM	electronic fetal heart rate monitoring
ASRM	American Society of Reproductive Medicine	EFW	estimated fetal weight
ATP	adenosine triphosphate	EIN	endometrial intraepithelial neoplasia
AUB	abnormal uterine bleeding	EOC	epithelial ovarian cancer
AVP	arginine vasopressin	EOGBSD	early-onset neonatal group B Streptococcus disease
BMI	body mass index	EP	ectopic pregnancy
BP	blood pressure	EPAU	early pregnancy assessment unit
bpm	beats per minute	ER	oestrogen receptor
BV	bacterial vaginosis	ESHRE	European Society for Human Reproduction
CAH	congenital adrenal hyperplasia		and Embryology
CDC	Centers for Disease Control and Prevention	ESRD	end-stage renal disease
CDH	congenital diaphragmatic hernia	EVT	extravillous trophoblast
CFU	colony-forming unit	EXIT	ex utero intrapartum treatment
CGH	comparative genomic hybridization	FASP	Fetal Anomaly Screening Programme

FBS	fetal scalp blood sampling	НТ	hydroxytryptamine <i>or</i> hormone therapy
FEV ₁	forced expiratory volume in 1 second	HUS	haemolytic uraemic syndrome
FFN	fetal fibronectin	HyCoSys	hysterosalpingo contrast sonography
FGM/C	female genital mutilation/cutting	IADPSG	International Association of Diabetes and Pregnancy
FGR	fetal growth restriction	112100	Study Groups
FHR	fetal heart rate	IARC	International Agency for Research on Cancer
FIGO	International Federation of Gynecology and	IBD	inflammatory bowel disease
1100	Obstetrics	ICH	intracranial haemorrhage
FISH	fluorescence in situ hybridization	ICP	intrahepatic cholestasis of pregnancy
FMAIT	fetal alloimmune thrombocytopenia	ICS	International Continence Society
FRC	functional residual capacity	ICSI	intracytoplasmic sperm injection
FSAD	female sexual arousal disorder		immunoglobulin
FSD	female sexual dysfunction	Ig IGRT	image-guided radiation therapy
FSH		IL	interleukin
FSIAD	follicle-stimulating hormone female sexual interest and arousal disorder	ILT	
			interstitial laser therapy
FSIRS	fetal systemic inflammatory response syndrome	IM	intramuscular
FVL	factor V Leiden	IMRT	intensity-modulated radiation therapy
G6PD	glucose-6-phosphate dehydrogenase	ISSVD	International Society for the Study of Vulvovaginal
GAS	group A Streptococcus	10110.0	Disease
GBS	group B Streptococcus	ISUOG	International Society of Ultrasound in Obstetrics
GDM	gestational diabetes mellitus	шь	and Gynecology
GFR	glomerular filtration rate	IUD	intrauterine device
GH	growth hormone	IUFD	intrauterine fetal demise
GMC	General Medical Council	IUGA	International Urogynecological Association
GnRH	gonadotropin-releasing hormone	IUGR	intrauterine growth restriction
GOG	Gynecologic Oncology Group	IUI	intrauterine insemination
GTD	gestational trophoblastic disease	IUT	intrauterine blood transfusion
GTN	gestational trophoblastic neoplasia	IV	intravenous
HAART	highly active antiretroviral therapy	IVC	inferior vena cava
HbA1c	glycated haemoglobin	IVF	in vitro fertilization
HBPM	home blood pressure monitoring	IVF-ET	in vitro fertilization with embryo transfer
HBV	hepatitis B virus	IVH	intraventricular haemorrhage
HC	head circumference	IVIG	intravenous immunoglobulin
hCG	human chorionic gonadotropin	JZ	junctional zone
HCV	hepatitis C virus	LABA	long-acting beta-2-agonist
HD	haemodialysis	LAC	lupus anticoagulant
HDP	hypertensive disorders of pregnancy	LAM	lactational amenorrhoea method <i>or</i> levator
HELLP	haemolysis, elevated liver enzymes, and low platelets		ani muscle
HFEA	Human Fertilization and Embryology Authority	LARC	long-acting reversible contraception
HGESS	high-grade endometrial stromal sarcoma	LAT	labour admission test
HGSOC	high-grade serous ovarian cancer	LBW	low birth weight
HIC	high-income country	LEEP	loop electrosurgical excision procedure
HIFU	high-intensity focused ultrasound	LFCNT	lateral femoral cutaneous nerve of the thigh
HIV	human immunodeficiency virus	LFT	liver function test
HLA	human leucocyte antigen	LGA	large for gestational age
HMB	heavy menstrual bleeding	LGESS	low-grade endometrial stromal sarcoma
HNPCC	hereditary non-polyposis colorectal cancer	LGSC	low-grade serous carcinoma
HPA	human platelet antigen	LH	luteinizing hormone
HPF	high power field(s)	linac	linear accelerator
hPL	human placental lactogen	LLETZ	large loop excision of the transformation zone
HPO	hypothalamic-pituitary-ovarian	LMIC	low- and middle-income countries
HPV	human papillomavirus	LMP	last menstrual period
HRAM	high-resolution anorectal manometry	LMWH	low-molecular-weight heparin
HRT	hormonal replacement therapy	LNG-IUS	levonorgestrel-releasing intrauterine system
HSDD	hypoactive sexual desire disorder	LUNA	laparoscopic uterosacral nerve ablation
HSG	hysterosalpingography	LUTO	lower urinary tract obstruction
HSP	Henoch-Schönlein purpura	LVSI	lymphovascular space invasion
HSV	herpes simplex virus	MAS	meconium aspiration syndrome

MBP	mechanical bowel preparation	POI	premature ovarian insufficiency
MCDA	monochorionic diamniotic	POP	pelvic organ prolapse
MCM	major congenital malformation	PPH	postpartum haemorrhage
MCMA	monochorionic monoamniotic	PPROM	preterm prelabour rupture of membranes
MDG	Millennium Development Goal	PR	progesterone receptor
MEC	Medical Eligibility Criteria	PRES	posterior reversible encephalopathy syndrome
MFPR	multiple fetal pregnancy reduction	PSC	primary sclerosing cholangitis
MG		PSN	
	myasthenia gravis	PSTT	presacral neurectomy
MHRA	Medicines Healthcare products Regulation Authority		placental site trophoblastic tumour
MMC	myelomeningocoele	PTB	preterm birth
MMP	matrix metalloproteinase	PTSD	post-traumatic stress disorder
MOEWS	Modified Obstetric Early Warning Score	PUL	pregnancy of unknown location
MPA	medroxyprogesterone acetate	PVL	periventricular leucomalacia
MR	magnetic resonance	QI	quality improvement
MRgFUS	magnetic resonance-guided focused ultrasound	RAS	renin-angiotensin system
1.07	surgery	rASRM	revised American Society for Reproductive Medicine
MRI	magnetic resonance imaging	RCOG	Royal College of Obstetricians and Gynaecologists
MS	multiple sclerosis	RCT	randomized controlled trial
MSAF	meconium staining of the amniotic fluid	RCVS	reversible cerebral vasoconstriction syndrome
MSU	mid-stream urine	RDS	respiratory distress syndrome
MUI	mixed urinary incontinence	RFA	radiofrequency ablation
NAAT	nucleic acid amplification test	RLS	restless legs syndrome
NCCN	National Comprehensive Cancer Network	RM	recurrent miscarriage
NHS	National Health Service	RPL	recurrent pregnancy loss
NICE	National Institute for health and Care Excellence	RR	relative risk
NIH	National Institutes of Health	SCD	sickle cell disease
NIP	national immunization programme	SCENIHR	Scientific Committee on Emerging and Newly
NIPT	non-invasive prenatal testing		Identified Health Risks
NK	natural killer	SCT	sacrococcygeal teratoma
NSAID	non-steroidal anti-inflammatory drug	SDG	Sustainable Development Goal
NT	nuchal translucency	SET	single embryo transfer
OA	occipitoanterior	SGA	small for gestational age
OAB	overactive bladder	SHBG	sex hormone-binding globulin
OASIS	obstetric anal sphincter injuries	SIS	saline infusion sonography
OBGYN	obstetrics and gynaecology	sIUGR	selective intrauterine growth restriction
OHSS	ovarian hyperstimulation syndrome	SLE	systemic lupus erythematosus
OP	occipitoposterior	SNRI	serotonin noradrenaline reuptake inhibitor
OR	odds ratio	SPRM	selective progesterone receptor modulator
OT	occipitotransverse	sPTB	spontaneous preterm birth
OVD	operative vaginal delivery	SSRI	selective serotonin reuptake inhibitor
PAI	plasminogen activator inhibitor	STI	sexually transmitted infection
PAPP-A	pregnancy-associated plasma protein A	SUA	single umbilical artery
PARP	poly(ADP ribose) polymerase	SUI	stress urinary incontinence
PBC	primary biliary cholangitis	SVT	supraventricular tachycardia
PCOS	polycystic ovary syndrome	T_3	triiodothyronine
PCR	polymerase chain reaction <i>or</i> protein:creatinine ratio	T_4	tetraiodothyronine (thyroxine)
PD	peritoneal dialysis	TAUS	transabdominal ultrasound
PDE	phosphodiesterase	TBG	thyroxine-binding globulin
PE	pulmonary embolism	TCGA	The Cancer Genome Atlas
PEFR	peak expiratory flow rate	TCRE	transcervical resection of the endometrium
PET	pre-eclampsia/toxaemia	TKI	tyrosine kinase inhibitor
PFMT	pelvic floor muscle training	TMA	thrombotic microangiopathy
PFS	progression-free survival	TOLAC	trial of labour after caesarean
PGD	preimplantation genetic diagnosis	tPA	tissue plasminogen activator
PGM	prothrombin gene mutation	TRAP	twin reversed arterial perfusion
PGS	preimplantation genetic screening	TSG	tumour suppressor gene
PID	pelvic inflammatory disease	TTP	thrombotic thrombocytopenic purpura
PLD	pegylated liposomal doxorubicin	TTTS	twin-to-twin transfusion syndrome

TVUS	transvaginal ultrasound	VCI	velamentous insertion of the cord
TZ	transformation zone	VEGF	vascular endothelial growth factor
UAE	uterine artery embolization	VHD	valvular heart disease
UBA	urethral bulking agent	VIA	visual inspection with acetic acid
UCP	umbilical cord prolapse	VIN	vulval intraepithelial neoplasia
UDCA	ursodeoxycholic acid	VLDL	very low-density lipoprotein
UES	undifferentiated endometrial sarcoma	VP	ventriculoperitoneal
UFH	unfractionated heparin	VSCC	vulval squamous cell carcinoma
UI	urinary incontinence	VTE	venous thromboembolism
uPA	urokinase plasminogen activator	VUR	vesicoureteral reflux
USS	ultrasound screening	vWD	von Willebrand disease
UTI	urinary tract infection	vWF	von Willebrand factor
UUI	urgency urinary incontinence	VZIG	varicella zoster immunoglobulin
uVIN	usual-type vulval intraepithelial neoplasia	VZV	varicella zoster virus
V/Q	ventilation-perfusion	WHI	Women's Health Initiative
VAIN	vaginal intraepithelial neoplasia	WHO	World Health Organization
VAS	vesicoamniotic shunting		women with epilepsy
VBAC	vaginal birth after caesarean delivery		

Contributors

- Jason A. Abbott Gynaecological Research and Clinical Evaluation (GRACE) Group, Royal Hospital for Women, Sydney; University of New South Wales, Sydney, Australia 47: Laparoscopy
- **Ganesh Adaikan** Department of Obstetrics and Gynaecology, National University of Singapore, National University Health System, Singapore 60: Female sexual dysfunction
- **Anthony Addei** Consultant Anaesthetist, St George's University Hospitals NHS Foundation Trust, London, UK
 - 28: Obstetric analgesia and anaesthesia
- Zarko Alfirevic Professor of Fetal and Maternal Medicine; Head of Department; Associate Pro-Vice-Chancellor (Clinical), Director of Harris-Wellbeing Preterm Birth Research Centre, University of Liverpool, Liverpool, UK 30: Preterm birth
- **Amanda Ali** Consultant Obstetrician and Maternal Medicine Specialist, Kingston Hospital NHS Foundation Trust, UK
- 15: Haematological disorders in pregnancy
- **Stephanie S. Andriputri** Gynaecological Research and Clinical Evaluation (GRACE) Group, Royal Hospital for Women, Sydney; University of New South Wales, Sydney, Australia

 47: Laparoscopy
- Mary Ann Lumsden Professor of Medical Education and Gynaecology, University of Glasgow Scotland, UK 46: Menopause
- Sabaratnam Arulkumaran Foundation Professor of Obstetrics & Gynaecology, University of Nicosia, Cyprus Professor Emeritus of Obstetrics and Gynaecology, St George's University of London, London, UK; Visiting Professor, Institute of Global Health, Imperial College, London, UK
 - 27: Fetal monitoring during labour
- **Sohail Bampoe** Consultant Anaesthetist, University College London Hospital, London, UK
 - 28: Obstetric analgesia and anaesthesia
- Marina Berbic Conjoint Senior Lecturer, School of Women's and Children's Health, Department of Obstetrics and Gynaecology, Royal Hospital for Women and University of New South Wales, Sydney, Australia 41: Menstrual disorders, amenorrhea, and dysmenorrhoea

- Smriti Bhatta Aberdeen Fertility Centre, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK 51: Infertility
- Siladitya Bhattacharya Aberdeen Fertility Centre, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
- Amarnath Bhide Consultant in Obstetrics and Fetal Medicine, St George's University Hospitals NHS Foundation Trust, London, UK 9: The placenta; 11: Prenatal diagnosis
- Carmen Binding Postgraduate Medical Resident, Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
 - 6: Preconceptional medicine
- Dustin Boothe Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT, USA 68: Radiation therapy in the management of gynaecological cancer
- Matthys Hendrik Botha Associate Professor and Head of Obstetrics and Gynaecology, Stellenbosch University and Tygerberg Hospital, South Africa
 - 72: Cancer in pregnancy
- **Graham J. Burton** The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

 9: The placenta
- Joanna M. Cain Professor of Obstetrics &
 Gynecology and Radiation Oncology; Vice Chair,
 Department of Obstetrics and Gynecology,
 University of Massachusetts Medical School,
 Worcester, MA, USA
 69: Palliative care
- Angharad Care Clinical PTB Research Fellow, Harris-Wellbeing Research Centre for Preterm Birth, University of Liverpool, Liverpool, UK 30: Preterm birth
- Marco Carlone Radiation Medicine Program, Princess Margaret Cancer Centre, and Department of Radiation Oncology, University of Toronto, Toronto, Canada 68: Radiation therapy in the management of
- Ana Piñas Carrillo Consultant Obstetrician, St George's University Hospitals NHS Foundation Trust, London, UK
 - 11: Prenatal diagnosis

gynaecological cancer

- Manas Chakrabarti Gynaecological Oncologist, Columbia Asia Hospital, Kolkata, India 71: Premalignant disease of the genital tract in pregnancy
- Karen K.L. Chan Department of Obstetrics & Gynaecology, University of Hong Kong, Queen Mary Hospital, Hong Kong
 66: Gestational trophoblastic disease
- **Yvonne Kwun Yue Cheng** Assistant Professor, Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 33: Obstetric procedures
- Frank A. Chervenak Zucker School of Medicine at Hofstra/Northwell and Lenox Hill Hospital, New York, USA
- 2: Ethics in obstetrics and gynaecology
- Jacqueline PuiWah Chung Assistant Professor,
 Department of Obstetrics and Gynaecology,
 Prince of Wales Hospital, The Chinese University
 of Hong Kong, Hong Kong
 44: Chronic pelvic pain
- **Tim Craig** Assistant Professor, Princess Margaret Cancer Centre, and Department of Radiation Oncology, University of Toronto, Toronto, Canada 68: Radiation therapy in the management of gynaecological cancer
- **Hilary O.D. Critchley** MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK 40: The menstrual cycle
- **Thomas D'Hooghe** Lab of Experimental Gynaecology, G-PURE Research Group, Department of Development and Regeneration, Leuven University, Belgium 45: Endometriosis
- Gillian Dean Consultant HIV & Sexual Health, Brighton & Sussex University Hospitals NHS Trust, Brighton & Hove, UK 43: Pelvic inflammatory disease
- Lynette Denny Professor and Chair, Department of Obstetrics & Gynaecology, University of Cape Town/Groote Schuur Hospital, Cape Town, South Africa; Director, South African Medical Research Council, Gynaecological Cancer Research Centre
 - 61: Cancer screening and prevention in gynaecology
- Arianna Di Florio Clinical Senior Lecturer,
 Division of Psychological Medicine and Clinical
 Neurosciences, Cardiff University, Cardiff, UK
 18: Psychiatric disorders in pregnancy and the
 postpartum

Stergios Doumouchtsis Consultant Obstetrician Gynaecologist and Urogynaecologist, Epsom and St Helier University Hospitals NHS Trust, UK, Honorary Senior Lecturer, St George's University of London, Visiting Professor, University of Athens, School of Health Sciences, Department of Medicine, Associate Clinical Professor, American University of the Caribbean, School of Medicine

1: Basic science in obstetrics and gynaecology; 59: Childbirth trauma

Tim Draycott Consultant Obstetrician, Department of Women's Health, North Bristol NHS Trust, Bristol, Avon, UK

29: Obstetric emergencies

Anupreet Dua Consultant in Obstetrics & Gynaecology and Sub-specialist Urogynaecologist, University Hospitals Plymouth NHS Trust, Plymouth, UK 56: Pelvic organ prolapse

Leroy C. Edozien Consultant in Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Manchester, UK

5: Clinical governance

David A. Ellwood Professor of Obstetrics & Gynaecology, Griffith University, Queensland; Director of Maternal-Fetal Medicine, Gold Coast University Hospital, Southport, Australia 34: Stillbirth

Vicki Flenady Director of the Centre of Research Excellence in Stillbirth (Stillbirth CRE), Mater Research Institute, Mater Hospital, Brisbane; Honorary Professor, University of Queensland, Brisbane, Australia 34: Stillbirth

Christina Fotopoulou Consultant Gynaecological Oncologist, Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London, UK

64: Ovarian, fallopian tube, and peritoneal cancer

Ian S. Fraser Conjoint Professor, School of Women's and Children's Health, Department of Obstetrics and Gynaecology, Royal Hospital for Women and University of New South Wales, Sydney, Australia 41: Menstrual disorders, amenorrhea, and dysmenorrhoea

Robert Freeman Consultant in Urogynaecology, University Hospitals, Plymouth and Hon Professor Plymouth University Peninsula Schools of Medicine and Dentistry, Urogynaecology, Plymouth, Devon, UK 56: Pelvic organ prolapse

Anthony Fyles Professor, Department of Radiation Oncology, Princess Margaret Hospital, Toronto, Canada 68: Radiation therapy in the management of gynaecological cancer

David Gaffney Academic Program Manager, Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT, USA 68: Radiation therapy in the management of gynaecological cancer **Kiren Ghag** Obstetrics Clinical Research Fellow, Department of Women's Health, Southmead Hospital, Bristol, UK

29: Obstetric emergencies

lan A. Greer President and Vice Chancellor of Queen's University Belfast, Belfast, UK 16: Thrombosis and embolism in pregnancy

Sahana Gupta Consultant in Obstetrics and Gynaecology, Northwick Park Hospital, Harrow, Middlesex, UK

49: Benign disease of the uterus

Jane E. Hirst Senior Fellow in Perinatal Health, Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK

10: Fetal growth

Pak Chung Ho Emeritus Professor and Honorary Consultant, Obstetrics & Gynaecology, The University of Hong Kong, Hong Kong, People's Republic of China

54: Termination of pregnancy

Andrew W. Horne Professor of Gynaecology and Reproductive Sciences, MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

39: Ectopic pregnancy

Zhongwei Huang Deputy Director,
Undergraduate Medication Education for
Obstetrics and Gynaecology, Associate
Consultant, Department of Obstetrics and
Gynaecology, National University Singapore,
National University Health Systems, Singapore
42: Polycystic ovary syndrome

Thomas Ind Gynaecological Surgeon, Royal Marsden and St George's Hospital, London, UK 3: Clinical anatomy of the pelvis and the reproductive organs

Adonis Ioannides Professor of Clinical Genetics, University of Nicosia Medical School, Nicosia, Cyprus

4: Genetics for the obstetrician and gynaecologist

Jay lyer Consultant and Senior Lecturer,
Advanced Laparoscopic and Pelvic Floor
Surgeon, Director AGES Advanced
Laparoscopic Fellowship Program,
Obstetrics and Gynaecology,
The Townsville and Mater Hospitals,
Townsville, Queensland, Australia
57: Urinary incontinence

Eric Jauniaux UCL EGA Institute for Women's Health, University College London, London, UK9: The placenta

Anuja Jhingran Professor, Anderson Cancer Center, Houston, TX, USA 68: Radiation therapy in the management of gynaecological cancer

lan Jones Professor of Psychiatry, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK 18: Psychiatric disorders in pregnancy and the postpartum

Devendra Kanagalingam Senior Consultant Obstetrician & Gynaecologist, Singapore General Hospital, Singapore 26: The management of labour

Mahantesh Karoshi Consultant Obstetrician & Gynaecologist, Royal Free London Hospital NHS Foundation Trust, London, UK 6: Preconceptional medicine

Shelley M. Kibel Medical Director, St Luke's
Hospice, Kenilworth, South Africa (until Jan
2017) Now in Private Palliative Care Practice,
Cape Town, South Africa
69: Palliative care

Justin C. Konje Professor of Obstetrics and Gynaecology Weill Cornell Medical College, Qatar; Executive Chair, Department of Obstetrics and Gynaecology, Sidra Medical and Research Centre, Doha, Qatar 22: Antepartum haemorrhage

Stephen Lapinsky Professor of Medicine, Division of Respirology, University of Toronto, Toronto, Canada

25: Respiratory diseases in pregnancy

Jonathan A. Ledermann Professor of Medical Oncology, UCL Cancer Institute; Director of Cancer Research UK and UCL Cancer Trials Centre, London, UK

64: Ovarian, fallopian tube, and peritoneal cancer

William Ledger Professor of Obstetrics and Gynaecology, University of New South Wales, Director of Reproductive Medicine, Royal Hospital for Women, Sydney, Australia 52: Assisted reproduction

Tak Yeung Leung Professor, Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 33: Obstetric procedures

Stephanie Lheureux Assistant Professor, University of Toronto; Clinician Investigator, Gynecology, Drug Development Program, Princess Margaret Cancer Centre, Toronto, Canada

67: Chemotherapy and biological, targeted, and immune therapies in gynaecological cancers

Hang Wun Raymond Li Associate Professor,
Department of Obstetrics and Gynaecology,
The University of Hong Kong, Hong Kong
54: Termination of pregnancy

Tin Chiu Li Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 44: Chronic pelvic pain

Stephen Lindow Hon Associate Professor of Obstetrics and Gynaecology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa

55: Violence against women and girls

Stephen D. Lyons Gynaecological Research and Clinical Evaluation (GRACE) Group, Royal Hospital for Women, Sydney; University of New South Wales, Sydney, Australia

47: Laparoscopy

- **Mayank Madhra** Fellow in Laparoscopic Surgery, Simpson Centre For Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh, UK 39: Ectopic pregnancy
- Laura A. Magee Professor of Women's
 Health, Department of Women and Children's
 Health, King's College London,
 Greater London, UK
 21: Hypertension
- **Tahir Mahmood** Consultant Obstetrician & Gynaecologist, Victoria Hospital, Kirkcaldy; Clinical Senior Lecturer, School of Medicine, University of St Andrews, St Andrews, UK 7: Obesity in obstetric and gynaecological practice
- Isaac Manyonda Professor and Consultant in Obstetrics and Gynaecology, St George's University of London; St George's University Hospitals NHS Foundation Trust, London, UK
 - 49: Benign disease of the uterus
- Mushi Matjila Associate Professor and Consultant, Department of Obstetrics & Gynaecology, University of Cape Town/Groote Schuur Hospital, Cape Town, South Africa 38: Miscarriage and recurrent miscarriage
- Jacqueline A. Maybin MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK 40: The menstrual cycle
- Nomonde H. Mbatani Gynaecological Oncology Unit, Department of Obstetrics and Gynaecology, University of Cape Town; Groote Schuur Hospital, Cape Town, South Africa
 - 63: Uterine cancer
- Laurence B. McCullough Zucker School of Medicine at Hofstra/Northwell and Lenox Hill Hospital, New York, USA
 - 2: Ethics in obstetrics and gynaecology
- Neena Modi Professor of Neonatal Medicine, Faculty of Medicine, Imperial College London and Chelsea London, UK
- Caitriona Monaghan Consultant Obstetrician and Gynaecologist, Subspecialist Maternal and Fetal Medicine, Royal Maternity Hospital, Belfast, Northern Ireland; Professor of Neonatal Medicine, Consultant Neonatologist, Imperial College London and Chelsea and Westminster NHS Foundation Trust, London, UK
- 37: Neonatal care and neonatal problems
- Caitriona Monaghan Consultant Obstetrician, Subspecialist Maternal and Fetal Medicine, Fetal Medicine, Royal Maternity Hospital, Belfast, County Antrim, Northern Ireland 19: Fetal therapy
- Deirdre J. Murphy Professor of Obstetrics and Head of Department, Trinity College, University of Dublin; Coombe Women & Infants University Hospital, Dublin, Ireland 32: Malpresentation, malposition, and cephalopelvic disproportion

- Surabhi Nanda Consultant in Maternal Fetal Medicine, Honorary Senior Lecturer, Women's Services, Guy's and St Thomas' NHS Foundation Trust, King's College, London, UK 20: Multiple pregnancy
- James P. Neilson Emeritus Professor of Obstetrics & Gynaecology, University of Liverpool, Liverpool, UK
 - 20: Multiple pregnancy
- Catherine Nelson-Piercy Professor of Obstetric Medicine, Women's Academic Health Centre, King's Health Partners, London, UK 25: Respiratory diseases in pregnancy
- Hextan Y.S. Ngan Department of Obstetrics & Gynaecology, University of Hong Kong, Queen Mary Hospital, Hong Kong 66: Gestational trophoblastic disease
- Siew-Fei Ngu Department of Obstetrics & Gynaecology, University of Hong Kong, Queen Mary Hospital, Hong Kong 66: Gestational trophoblastic disease
- Andy Nordin Gynaecological Oncologist and Lead Clinician for Cancer, East Kent Hospitals University Foundation NHS Trust, Margate, UK 71: Premalignant disease of the genital tract in pregnancy
- **Karen Nugent** Senior Lecturer, Surgery, University of Southampton, Southampton, Hampshire, UK 58: Faecal incontinence and anorectal dysfunction
- **David Nunns** Consultant Gynaecological Oncologist, Department of Obstetrics and Gynaecology, Nottingham University Hospitals, Nottingham, UK 50: Benign disease of the vulva
- **Gbemisola Okunoye** Assistant Professor of Obstetrics and Gynaecology and Senior Attending Physician, Weill Cornell Medical College, Qatar; Sidra Medical and Research Centre, Doha, Qatar
 - 22: Antepartum haemorrhage
- Maaike Oonk Gynaecological Oncologist,
 Department of Obstetrics and Gynaecology,
 University Medical Center Groningen, University
 of Groningen, Groningen, The Netherlands
 65: Premalignant and malignant disease of the
 vulva and vagina
- Amit M. Oza Professor, University of Toronto; Co-Director, Drug Development Program, Princess Margaret Cancer Centre, Toronto, Canada 67: Chemotherapy and biological, targeted, and immune therapies in gynaecological cancers
- Aris T. Papageorghiou Professor in Fetal Medicine and Obstetrics, St George's University Hospitals NHS Foundation Trust, Blacskhaw Road, London and Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK
 - 10: Fetal growth
- Michael Permezel Emeritus Professor of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
 - 13: Diabetes in pregnancy

- Julia P. Polk Consultant Obstetrician Gynaecologist, The Permanente Medical Group (Kaiser Permanente), Walnut Creek, California, USA
 - 36: Induction of labour
- Jaime Prat Emeritus Professor, Department of Pathology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
 - 70: Pathology of tumours of the female genital tract
- Walter Prendiville Professor/ Consultant Gynaecologist & Director of Screening, University of Pittsburgh Medical Centre (UPMC), Beacon Hospital, Dublin, Republic of Ireland
- 62: Premalignant and malignant disease of the cervix
- Suneetha Rachaneni Consultant in Gynaecology and Subspecialist in Urogynaecology, Gynaecology, Shrewsbury and Telford Hospitals NHS Trust, Shropshire, West Midlands, UK 56: Pelvic organ prolapse
- **Ajay Rane** Professor and Head, Obstetrics and Gynaecology, James Cook University, Townsville, Queensland, Australia *57: Urinary incontinence*
- Oncology Unit, Department of Obstetrics and Gynaecology, University of Cape Town; Groote Schuur Hospital, Cape Town, South Africa
 - 63: Uterine cancer
- Stephen J. Robson President, Royal Australian and New Zealand College of Obstetricians and Gynaecologists; Professor of Obstetrics and Gynaecology, Australian National University Medical School, Canberra, Australia 35: Postpartum care and problems in the puerperium
- Linda Rogers Department of Obstetrics and Gynaecology, University of Cape Town/ Groote Schuur Hospital, Cape Town; SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
 - 65: Premalignant and malignant disease of the vulva and vagina
- Jonathan Ross Professor of Sexual Health and HIV, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK 43: Pelvic inflammatory disease
- **Sukhwinder Sahota** Specialist Registrar, Edinburgh Royal Infirmary, Edinburgh, UK 7: Obesity in obstetric and gynaecological practice
- **Rengaswamy Sankaranarayan** Screening Group, International Agency for Research on Cancer, Lyon, France
 - 61: Cancer screening and prevention in gynaecology
- Jenifer Sassarini Consultant Obstetrician and Gynaecologist, Glasgow Royal Infirmary, Glasgow, Scotland, UK 46: Menopause

- Hassan Shehata Consultant Obstetric Physician and Honorary Senior Lecturer, Women's Health, Epsom & St Helier University Hospitals NHS Trust & St George's Medical School, London, UK 15: Haematological disorders in pregnancy
- Andrew H. Shennan Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, Kings College, London, UK 8: Maternal physiology
- Alexis Shub Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Australia 13: Diabetes in pregnancy
- Rosalind Simpson Clinical Research Fellow, Centre of Evidence Based Dermatology, University of Nottingham, Nottingham, UK 50: Benign disease of the vulva
- **Karolina Skorupskaite** MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK 40: The menstrual cycle
- Philip Steer Emeritus Professor, Division of Surgery and Cancer, Faculty of Medicine, Imperial College London; Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, UK 12: Cardiac disease in pregnancy
- Petrus S. Steyn Honorary Associate Professor,
 Department of Obstetrics and Gynaecology, Faculty
 of Health Sciences, University of Cape Town/Groote
 Schuur Hospital, Cape Town, South Africa
 53: Contraception
- Vikram Sinai Talaulikar Associate Specialist, Reproductive Medicine Unit, University College London Hospital, London, UK 27: Fetal monitoring during labour; 38: Miscarriage and recurrent miscarriage
- Basky Thilaganathan Consultant and Director, Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust; Molecular & Clinical Sciences Research Institute, St George's University of London, UK 19: Fetal therapy
- Jim G. Thornton Professor of Obstetrics and Gynaecology, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK 31: Prolonged pregnancy

- Austin Ugwumadu Consultant Obstetrician & Gynaecologist / Clinical Director of Women's Health, Obstetrics & Gynaecology, St George's University Hospitals, London, UK 17: General and specific infections in pregnancy including immunization
- Zephne M. van der Spuy Emeritus Professor/ Senior Scholar, Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Cape Town/Groote Schuur Hospital, Cape Town, South Africa 53: Contraception
- Ate van der Zee Professor of Gynecological Oncology, Vice President Board of Directors University Medical Center Gronigen, University of Gronigen, Faculty of Medical Sciences, Antonius Deusinglaan, The Netherlands 65: Premalignant and malignant disease of the
- Arne Vanhie Leuven University Fertility
 Center, Department of Obstetrics and
 Gynaecology, University Hospital Leuven,
 Belgium; Lab of Experimental Gynaecology,
 G-PURE Research Group, Department of
 Development and Regeneration, Leuven
 University, Belgium
- 45: Endometriosis

vulva and vagina

- Vimal Vasu Consultant in Neonatal Medicine, East Kent Hospitals University NHS Foundation Trust, UK
 - 37: Neonatal care and neonatal problems
- Peter von Dadelszen Professor of Global Women's Health, Department of Women and Children's Health, King's College London, Greater London, UK
 - 21: Hypertension
- **Tim J. von Oertzen** Neurologist and Head of Department, Department of Neurology 1, Neuromed Campus, Kepler Universitätsklinik, Linz, Austria
 - 24: Neurological disorders in pregnancy
- Nicola Vousden Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, Kings College, London, UK
 - 8: Maternal physiology
- Judith N. Wagner Neurologist, Department of Neurology 1, Neuromed Campus, Kepler Universitätsklinik, Linz, Austria
 - 24: Neurological disorders in pregnancy

- Kate F. Walker Clinical Assistant Professor in Obstetrics and Gynaecology, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK

 31: Prolonged pregnancy
- Andrew Weeks Professor of International Maternal Health, Women's and Children's Health, University of Liverpool, Liverpool, Merseyside, UK
 - 36: Induction of labour
- **Lucy H.R. Whitaker** MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
 - 40: The menstrual cycle
- David Williams Obstetric Physician, UCL EGA Institute for Women's Health, University College London Hospital, London, UK
 - 14: Renal disease in pregnancy
- Catherine Williamson Professor of Women's Health, King's College London, London, UK 23: Liver and endocrine diseases in pregnancy
- Cathy Winter Senior Research Midwife, Women and Children's Health, North Bristol NHS Trust & PROMPT Maternity Foundation, Bristol, UK
 - 29: Obstetric emergencies
- **Tonye Wokoma** Consultant Sexual and Reproductive Health, Community Gynaecology, Sexual and Reproductive Health, Conifer House, City Healthcare Partnership, Hull, UK
 - 55: Violence against women and girls
- **Eu Leong Yong** Professor, Senior Consultant, Department of Obstetrics and Gynaecology, National University Singapore, National University Health Systems, Singapore 42: Polycystic ovary syndrome
- **Peter J. O'Donovan** Consultant Gynaecologist, Yorkshire Clinic, West Yorkshire, UK 48: *Hysteroscopy*
- **O.A. O'Donovan** GP Trainee, Airedale General Hospital, West Yorkshire, UK

48: Hysteroscopy

Basics in Obstetrics and Gynaecology

1. Basic science in obstetrics and gynaecology 3

Stergios Doumouchtsis

2. Ethics in obstetrics and gynaecology 33 Frank A. Chervenak and Laurence B. McCullough

3. Clinical anatomy of the pelvis and the reproductive organs 44

Thomas Ind

4. Genetics for the obstetrician and gynaecologist *55*Adonis loannides

5. Clinical governance 72
Leroy C. Edozien

Preconceptional medicine 83
Carmen Binding and Mahantesh Karoshi

7. Obesity in obstetric and gynaecological practice 96
Sukhwinder Sahota and Tahir Mahmood

Basic sciences in obstetrics and gynaecology

Stergios Doumouchtsis

Structure and function of the genome

Chromosomes

The normal human genome is diploid and consists of 46 human chromosomes in 23 pairs. Chromosome abnormalities may be related to the number (aneuploidy) or structure of chromosomes. A karyotype describes the number of chromosomes and major structural abnormalities such as deletions, duplications, or translocations.

Meiosis is the cell division process in germline cells, resulting in the production of haploid gametes (ova and sperm). The process of meiosis generates four haploid cells, which can participate in fertilization. *Mitosis* is a process of the cell cycle in somatic cells resulting in the formation of two diploid daughter cells with identical genomes to that of the parental cell.

Genes and gene expression

A *gene* is a sequence of nucleotides in deoxyribonucleic acid (DNA) which codes for a protein. The sequence of nucleotides determines the amino acid sequence of the protein and its function. Each gene is represented twice (alleles) in the complement of genes known as the genome. Genes contain information that determines phenotype.

Genes are made up of exons and introns. Exons code for the protein and introns are spliced out during processing to messenger ribonucleic acid (mRNA). The length of the introns is far greater than that of the exons. The exact function of the introns is unclear. Although the exon sequence is highly conserved between individuals, the intron sequence is not.

Gene expression is the process by which information from a gene is used in the synthesis of a protein or another gene product such as transfer RNA (tRNA) or functional RNA. This process involves transcription of RNA from a DNA template and translation of mRNA into protein.

Although all cells in an organism have the same information in their DNA, only 3–5% of genes are active in a cell. Most of the genome is suppressed, a characteristic of gene expression.

Changes in gene regulation result in the expression of various gene products and the suppression of others. Methods for measuring RNA to evaluate gene expression include northern blot, ribonuclease protection assay, *in situ* hybridization, reverse-transcription

quantitative polymerase chain reaction (PCR), and spotted complementary DNA arrays. Genome-wide methods for profiling gene expression include oligonucleotide arrays (microarrays) and transcriptome sequencing.

Epigenetics

Epigenetics is the study of heritable genome modifications in gene expression that are not due to alterations in DNA sequences. DNA methylation and histone modification (acetylation, methylation) are common epigenetic changes and can affect the process of transcription or silencing of gene expression.

Other epigenetic changes include modifications in non-coding RNAs and telomere length. Influences of environmental factors and epigenetic changes in the development of diseases such as cancer have been investigated in recent years. Such factors may include drugs, ultraviolet light, infection, and diet. Geographic differences in the incidence of autoimmune diseases have also been studied (1). Ageing and development of disease is another area of epigenetics involvement.

Molecular biology techniques

Molecular diagnostic tools in clinical genetics are applied for genotyping, detection of mutations, and assessment of chromosomal structural variants.

PCR technology is used to identify mutations. It requires prior knowledge of the DNA sequence of the fragment to be amplified. Real-time PCR allows the simultaneous detection and quantification of a DNA molecule and selection of mutant DNA. Deletion and insertion mutations can be identified using this technique.

PCR can detect organisms such as human immunodeficiency virus (HIV), methicillin-resistant *Staphylococcus aureus*, as well as chromosomal translocations associated with cancers.

Cytogenetic karyotype analysis by chromosomal banding, fluorescence *in situ* hybridization (FISH) on metaphase or interphase nuclei, or array comparative genomic hybridization (CGH) can identify structural variations. The resolution improves from karyotyping to interphase FISH and to array CGH. New sequence variants continue to be discovered with methods that allow analysis of entire genes or genomes.

Ovulation and ovarian function

Control of the hypothalamic-pituitary axis

The hypothalamus is part of the diencephalon. It is separated from the thalamus by the hypothalamic sulcus. Its external boundaries are rostrally the optic chiasm, laterally the optic tract, and posteriorly the mammillary bodies. Its rostral boundary is a line through the optic chiasm, lamina terminalis, and anterior commissure and the caudal boundary extends from the posterior commissure to the caudal limit of the mammillary body. Dorsolaterally, the hypothalamus extends to the medial edge of the internal capsule (Figure 1.1) (2). The hypothalamus is associated with visceral, endocrine, autonomic, affective, and emotional behaviour.

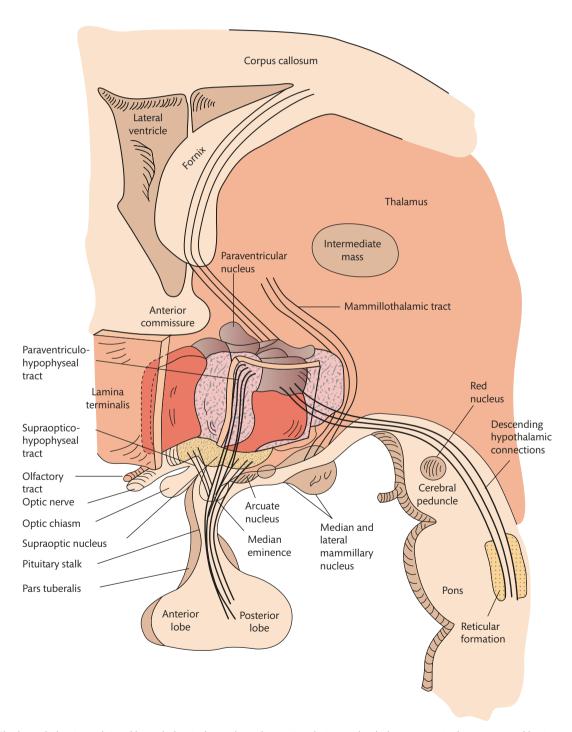


Figure 1.1 The hypothalamic nuclei and hypothalamic-hypophyseal tracts in relation to the thalamus, ventricular system, and brainstem.

Reproduced from Ignacio Bernabeu, Monica Marazuela, and Felipe F. Casanueva, General concepts of hypothalamus-pituitary anatomy, in: Oxford Textbook of Endocrinology and Diabetes 2e (eds: John Wass et al.), Oxford University Press, 2011, with permission from Oxford University Press.

The anterior pituitary is connected to the hypothalamus through a portal system. Hormones synthesized in the hypothalamus are transported to the nerve terminals on the hypophyseal portal capillaries. Hormones released into the hypophyseal portal system are transported to the anterior lobe of the pituitary. The posterior lobe of the pituitary consists of nerve terminals which lie in the supraoptic and paraventricular nuclei of the hypothalamus. Oxytocin and vasopressin are synthesized by the posterior pituitary.

Actions of pituitary and ovarian hormones

Gonadotropin-releasing hormone (GnRH) is synthesized in the preoptic area of the hypothalamus and is transported via portal vessels to the anterior pituitary where it stimulates the gonadotrophs to release luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These glycoproteins share a common alpha-subunit and a specific beta-subunit. They control the steroid synthesis of the testes and ovaries.

Oestrogen and progesterone are the major hormones secreted by the ovarian follicles and the corpus luteum (Figure 1.2).

Ovulation

A rise in FSH secretion stimulates the growth and differentiation of preantral and antral follicles, which in turn stimulates oestrogen secretion with a peak approximately 1 day before ovulation. Then, the mid-cycle surge occurs (3) and is associated with a change from negative feedback control of LH secretion by ovarian hormones to

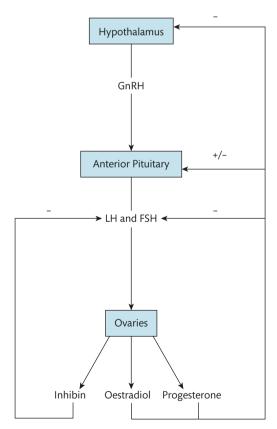
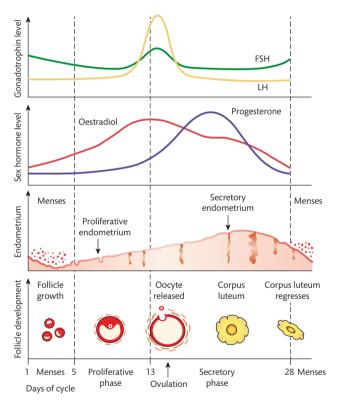


Figure 1.2 Hypothalamic-pituitary-ovarian axis.

Reproduced from S. Arulkumaran, Menstrual disorders, in: *Training in Obstetrics and Gynaecology* (eds. Ippokratis Sarris, Susan Bewley and Sangeeta Agnihotri), Oxford University Press, 2009, with permission from Oxford University Press.


a positive feedback, resulting in a tenfold rise in serum LH and a smaller increase in FSH concentrations. The LH surge leads to substantial changes in the ovary. The oocyte in the dominant follicle completes its first meiotic division. The oocyte is subsequently released from the follicle at the surface of the ovary (4).

Before the release of the oocyte, the surrounding granulosa cells luteinize and produce progesterone. As a result, LH pulses become less frequent by the end of the surge (Figure 1.3).

The increasing serum progesterone concentrations have an effect on the endometrium, leading to cessation of mitoses and 'organization' of the glands.

Endometrial cycle

The average duration of the adult menstrual cycle is 28–35 days. The first day of menses represents the first day of the cycle. The cycle is then divided into two phases: follicular and luteal. The follicular

Figure 1.3 The hormonal and endometrial axis of the human menstrual cycle. After menstruation, rising levels of oestrogen exert a negative feedback, reducing follicle-stimulating hormone (FSH) release. Towards mid cycle, still higher levels of oestrogen then exert a positive feedback, causing a sudden peak release of luteinizing hormone (LH), which induces ovulation. An increased level in FSH also occurs. The endometrium during this phase has a thin surface epithelium and the glands are straight, short, and narrow (proliferative/follicular). In the luteal phase, LH levels maintain the corpus luteum, the source of progesterone. The endometrial glands become more tortuous during this phase (secretory/luteal) with secretion in the lumen and increasing fluid separating the stromal cells. If an embryo fails to implant, the corpus luteum deteriorates after about 7 days, with a resulting fall in progesterone and oestrogen concentrations.

Reproduced from S. Arulkumaran, Menstrual disorders, in: *Training in Obstetrics and Gynaecology* (eds. Ippokratis Sarris, Susan Bewley and Sangeeta Agnihotri), Oxford University Press, 2009, with permission from Oxford University Press.

phase begins with the onset of menses and ends on the day before the LH surge. The luteal phase begins on the day of the LH surge and ends at the onset of the next menses. The follicular phase lasts approximately 14–21 days and the luteal phase 14 days. Changes in the intermenstrual interval are primarily due to changes in the follicular phase. The luteal phase remains relatively stable. There is significantly more cycle variability during the first years after menarche and the 10 years before menopause. Menstrual cycle length peaks at the age of 25–30 years and then gradually declines. Between the ages of 20 and 40 years, there is relatively little cycle variability. Women in their 40s may have slightly shorter cycles (5).

During the menstrual cycle, endometrial changes include a proliferative phase and a secretory phase. The proliferative phase is characterized by an increased rate of mitotic division of endometrial glandular cells under the influence of oestradiol, leading to proliferation. The secretory phase is characterized by secretory activity following further proliferation under the influence of oestradiol and progesterone.

Luteinization of corpus luteum occurs 14 days after ovulation in the absence of conception. A rise in FSH is induced by the loss of negative feedback from oestradiol and progesterone, resulting in the start of another cycle. If, however, conception occurs, luteinization does not occur and the corpus luteum is maintained by human chorionic gonadotropin.

Puberty and menopause

Puberty is a process of physical and hormonal changes resulting in sexual maturity and capability of sexual reproduction. The two main

physiological events include *gonadarche*, which is the activation of gonadal sex steroid production by the pituitary hormones FSH and LH, and *adrenarche*, which involves the increase in production of androgens by the adrenal cortex.

Thelarche is the appearance of breast tissue. Menarche is the onset of menstrual cycles. This is caused by the action of oestradiol on the endometrium and usually is not associated with ovulation. Spermarche is the onset of sperm production. Pubarche is the appearance of pubic hair, primarily due to the effects of androgens from the adrenal gland. The term also refers to the appearance of axillary hair (Figure 1.4).

In puberty, the increased frequency and amplitude of GnRH pulses stimulates secretion of FSH and LH and activates gonadal steroidogenesis.

Leptin is secreted by adipose tissues and along with kisspeptin plays a role in the onset of puberty. *Menopause* is defined as the permanent cessation of menstruation. It is an oestrogen- and progesterone-deficient state with an increase in the secretion of FSH and LH. The cessation of menstrual periods occurs as the ovary no longer contains follicles which are responsive to FSH. It is diagnosed retrospectively after 12 months of amenorrhea without any other cause (Figure 1.5).

Lack of oestrogen causes vasomotor symptoms including hot flushes and night sweats as well as mood swings and depression. Long-term effects include lower genital tract atrophy, osteoporosis, changes in lipid metabolism, and an increased risk of cardiovascular disease (6). Menopause usually occurs between 45 and 55 years of

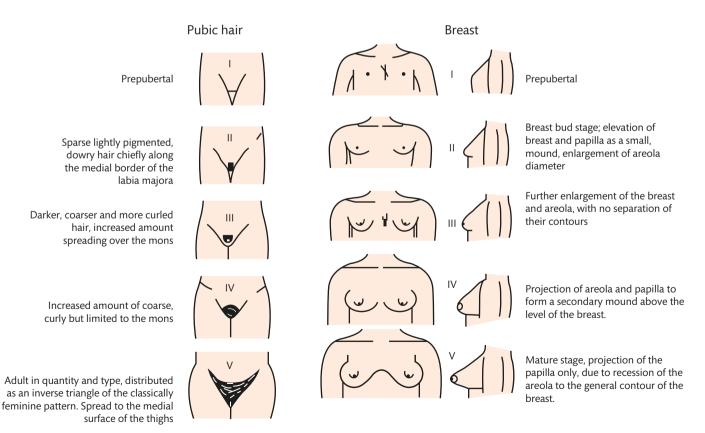
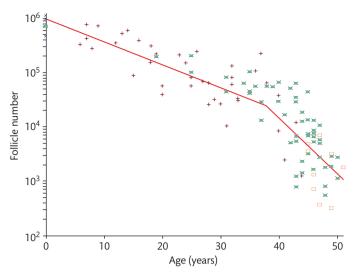



Figure 1.4 Marshall and Tanner stages of breast and pubic hair development.

Reproduced from McVeigh E, Homburg R, and Guillebaud J. Oxford Handbook of Reproductive Medicine and Family Planning, Oxford University Press, 2008, with permission from Oxford University Press.

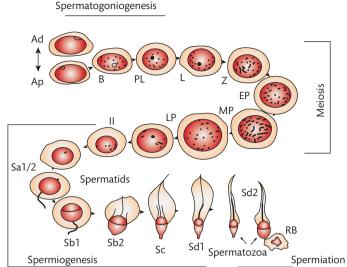
Figure 1.5 Decline in primordial follicle number with age. Reproduced from Faddy MJ, Gosden RG. A mathematical model of follicle dynamics in the human ovary. *Hum Reprod.* 1995; 10: 770–5 with permission from Oxford University Press.

age. In the United Kingdom, the average age of menopause is 51. Menopause before the age of 40 years is considered abnormal and is referred to as primary ovarian insufficiency (premature ovarian failure).

The transition to menopause, or perimenopause, is characterized by irregular menstrual cycles (7) and hormonal fluctuations, and a variable frequency and severity of symptoms such as hot flashes, sleep disturbances (8), mood changes, and vaginal dryness. It begins on average 4 years before the final menstrual period (9).

Fertilization and implantation

Gametogenesis


The full maturation of spermatozoa takes approximately 64–70 days. FSH causes stimulation of spermatogenesis and LH is responsible for stimulation of Leydig cells and testosterone production.

A large number of spermatogonia are produced by mitosis after puberty and are converted to spermatocytes in the testis. Following the first meiotic division, spermatozoa are released into the seminiferous tubules and then into the vas deferens. The second meiotic division is then completed (Figure 1.6).

Follicular development is characterized by enlargement of the ovum with aggregation of stromal cells to form the thecal cells. When a dominant follicle is selected, the innermost layers of granulosa cells become adherent to the ovum and form the *corona radiata*. A layer of gelatinous material around the ovum forms the *zona pellucida*. The follicle enlarges and bulges through the surface of the ovary and is released at the time of ovulation. The granulosa and the theca internal cells undergo luteinization. Formation of the *corpus luteum* occurs approximately 7 days after ovulation. Unless implantation occurs, it subsequently regresses.

Sperm transport

Once sperms arrive near the cervical os, sperm migration into the cervical mucous occurs with a rate normally of 6 mm/min. Motile

Figure 1.6 Schematic representation of the germ cell types and their development path during human spermatogenic process. Ad, A dark-spermatogonium; Ap, A pale-spermatogonium; B, B-spermatogonium; EP (early), MP (mid), and LP (late), pachytene spermatocyte; II, secondary spermatocyte; L, leptotene spermatocytes; M, mitochondria; PL, preleptotene spermatocytes; RB, residual body; Sa–Sd2, steps of spermatid differentiation (Sd2 spermatids are the mature testicular sperm). The developmental process from spermatogonium to formation of testicular sperm is considered to require at least 64 days (33–35). Reproduced from C. Marc Luetjens and Gerhard F. Weinbauer, The male gamete: spermatogenesis, maturation, function, in: Oxford Textbook of Endocrinology and Diabetes 2e (eds: John Wass et al.), Oxford University Press, 2011, with permission from Oxford University Press.

spermatozoa reach the uterine cavity and subsequently the fimbrial end of the fallopian tube.

Capacitation and fertilization

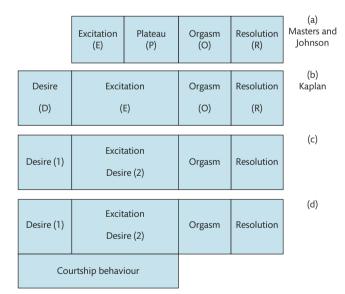
Capacitation is the functional maturation of the spermatozoon. It takes place once sperm passes through the epididymis and seminal vesicles. This process continues in the uterus or fallopian tube. Capacitation allows penetration of the zona pellucida by the sperm. Enzymes such as beta-amylase or beta-glucuronidase may act on the membranes of spermatozoa and facilitate sperm penetration. The capacitation process also involves modifications of membrane lipids, loss of cholesterol from plasma membrane, activation of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway, increases in calcium (Ca²⁺) uptake and pH, hyperpolarization of membrane potential, and tyrosine phosphorylation (10).

The process of *fertilization* involves the union of the ovum and spermatozoon. When a spermatozoon reaches the cumulus around the ovum, the acrosome reaction is initiated. The outer acrosomal membrane fuses with the plasma membrane surrounding the spermatozoon and lytic enzymes are released. This facilitates the penetration of the oocyte membrane. The sperm head fuses with the oocyte plasma membrane and by phagocytosis the sperm head and mid piece are engulfed into the oocyte. The tail piece is left outside the cell membrane of the oocyte.

The sperm head forms the male pronucleus and with the female pronucleus they form the zygote. After disintegration of the membranes of the pronuclei, fusion of the male and female chromosomes occurs. This is called *syngamy* and is followed by the first cleavage

division. After a series of divisions and at the 16-cell stage, a solid ball of cells called blastomeres forms within the zona pellucida. This is known as a *morula*. A fluid-filled cavity develops within the morula to form the blastocyst.

Implantation


Thirty-six hours after fertilization, the conceptus is transported through the fallopian tube and reaches the uterine cavity approximately 4 days later. The secretory endometrium is receptive to implantation. The second mitotic division of the oocyte is completed after fertilization and is followed by extrusion of the second polar body.

Six days after ovulation, the embryo becomes attached to the mid portion of the uterine cavity. By the seventh day, the blastocyst lies deep in the endometrium.

Physiology of coitus

The sexual response cycle described by Masters and Johnson has four phases in males and females. These phases are excitation, plateau, orgasmic, and resolution (Figure 1.7) (11, 12).

In the male, the excitation phase is associated with increased blood flow to the genitals and compression of venous channels of the penis resulting in erection. In the plateau phase, the penis remains in erection and the testes increase in size. Secretion of clear fluid may appear at the urethral meatus. In the orgasmic phase, reflex contractions of the bulbospongiosus (formerly bulbocavernosus) and ischiocavernosus muscles are followed by ejaculation of semen in spurts. During the resolution phase,

Figure 1.7 The development of the human sexual response model from (a) the original excitation, plateau, orgasmic, and resolution model of Masters and Johnson (11) through (b) the desire, excitation, orgasmic, and resolution model of Kaplan (12) to (c) the proposed modification with desire phase 1 (before initiation of the excitation phase and desire phase 2 during excitation phase) and finally (d) with added courtship behaviour.

Reproduced from Roy J. Levin, Normal sexual function, in: *New Oxford Textbook of Psychiatry* (eds. Michael Gelder, Nancy Andreasen, Juan Lopez-Ibor, and John Geddes), Oxford University Press 2012, with permission of Oxford University Press.

penile erection subsides. During this phase, the male becomes refractory to further stimulation.

In the female, the excitation phase involves erection of the clitoris and swelling of the labia minora and vagina, vaginal lubrication, and nipple erection. The orgasmic phase is associated with narrowing of the vaginal introitus and contractions of the pelvic floor muscles. The plateau phase may be sustained in females and result in multiple orgasms. Following orgasm, congestion of the pelvic organs resolves rapidly.

Embryology

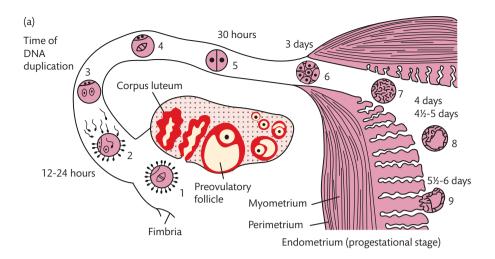
Early embryo development

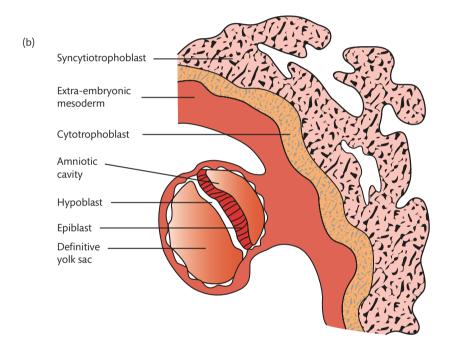
Cells differentiate into an outer layer, the *trophoblast*, and an *inner cell mass*, which will give rise to the *embryo proper*, the *amnion*, *yolk sac*, and *allantois*. Only two layers of cells intervene between the amniotic sac and yolk sac (Figure 1.8).

The layers of cells adjacent to the amniotic sac form the embryonic *ectoderm*. Ectodermal tissues of the fetus develop from these cells including skin, its appendages, neural tube, and its derivatives (brain, spinal cord, autonomic ganglia, and adrenal medulla). Cells adjacent to the yolk sac form the embryonic *endoderm*. Endodermal tissues include lining of the gut, epithelial cells of thyroid, parathyroid, trachea, lungs, liver, and pancreas. Between ectoderm and endoderm, a third layer of cells develops mainly from ectodermal proliferation. This middle layer forms the *mesoderm*. Mesodermal tissues are bones, muscles, cartilage, and subcutaneous tissues of the skin.

Organogenesis

Ectoderm, mesoderm, and endoderm initially take the form of a circular sandwich. Disproportionate growth of ectoderm results in elongation of the embryonic plate into an oval form. Each end of this plate curves, forming the head and tail folds. The amniotic sac enlarges and completely surrounds the developing embryo and the yolk sac. On the dorsal aspect of the ectoderm, a groove appears from the middle of the head to the tail and changes into the neural tube from which the nervous system develops.


Mesoderm starts to grow laterally and gives rise to the paraxial mesoderm, the intermediate cell mass, and the lateral plate mesoderm (Figure 1.9).


Endoderm grows first laterally and then ventrally to form the gut. The lateral plate of the mesoderm divides into somatopleure, which remains adjacent to ectoderm, and the splanchnopleure, which grows around the developing gut. The space between the somatopleure and splanchnopleure form the coelomic cavity. This later becomes the pleural and peritoneal cavities.

The paraxial mesoderm develops into vertebrae, dura matter, and muscles of the body wall. The intermediate cell mass grows ventrally into the coelomic cavity and forms the urogenital system. See Figure 1.10.

Development of the genital organs

Genital and urinary systems arise from the intermediate mesoderm. The pronephros appears first and quickly disintegrates. At the caudal end of pronephros, the mesonephric duct (Wolffian duct) develops

Figure 1.8 (a) Events of the first 6 days of development of a human embryo. 1: oocyte immediately after ovulation; 2: fertilization 12–24 h later results in the zygote; 3: zygote contains male and female pronuclei; 4: first mitotic division; 5: two-cell stage; 6: 3-day morula made up of up to 16 blastomeres; 7: morula stage (16–32 blastomeres) reaches the uterine lining; 8: early blastocyst; 9: implantation occurs at around day 6. (b) The site of implantation at the end of the second week.

and passes down the body to reach the cloaca. The mesonephros develops as a bulge in the dorsal wall of the coelom in the thoracic and lumbar regions. Two important structures appear on the coelomic surface of the mesonephros: (a) the genital ridge from which the gonad will form and (b) the paramesonephric (Mullerian) duct. The paramesonephric duct appears as a groove on the lateral aspect of the coelom and then becomes a tube. See Figures 1.11–1.14.

Placental development

Following implantation, the trophoblast completely surrounds the embryo in the form of proliferating cytotrophoblast and a syncytial layer. During the first trimester, a subset of trophoblast cells, the extravillous trophoblast (EVT) cells, become invasive and grow

through the outer syncytium into the decidua where they invade maternal spiral arterioles. The trophoblast shell begins to break open, allowing maternal blood to enter the primitive intervillous space where it is utilized by the developing villous placenta and fetus. See Figure 1.15.

Development of membranes and amniotic fluid

The embryonic disc lies between the amniotic cavity and the primary yolk sac. The amniotic cavity develops between the embryonic ectoderm and cytotrophoblast. By the 12th postovulatory day, the base of this cavity is formed by embryonic ectoderm and the walls and roof are formed by the cytotrophoblast. Amniotic fluid is initially formed from the primitive cells around the amniotic vesicle.

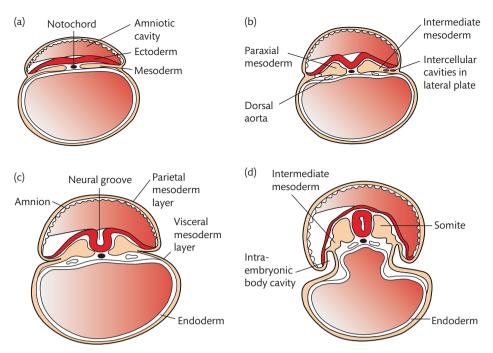
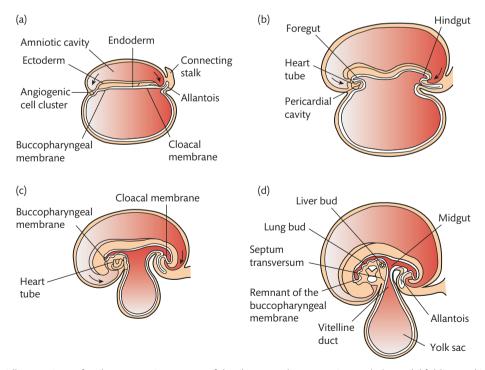
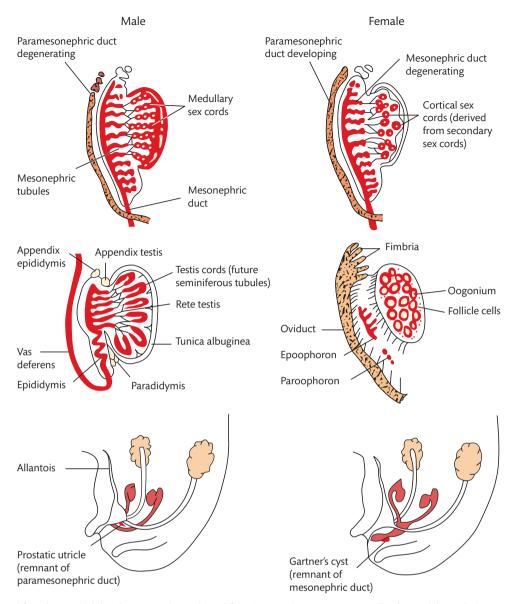




Figure 1.9 Transverse sections showing development of the mesodermal germ layer at days 17 (a), 19 (b), 20 (c), and 21 (d). The thin mesodermal sheet gives rise to paraxial mesoderm (future somites), intermediate mesoderm (future excretory units), and lateral plate, which is split into parietal and visceral mesoderm layers lining the intraembryonic cavity.

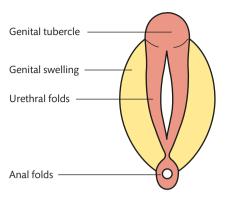
Figure 1.10 Sagittal midline sections of embryos at various stages of development demonstrating cephalocaudal folding and its effect on position of the endoderm-lined cavity. Presomite embryo (a), seven-somite embryo (b), 14-somite embryo (c), and 1-month embryo (d). Note the position of the angiogenic cell clusters in relation to the buccopharyngeal membrane.

Reproduced from Robert Wilkins, Simon Cross, Ian Megson, and David Meredith, Reproduction and development, Oxford Handbook of Medical Sciences, 2011, with permission from Oxford University Press.

Figure 1.11 Male and female gonadal development. The male and female genital systems are virtually identical through the seventh week. In the male, SRY protein produced by the pre-Sertoli cells causes the medullary sex cords to develop into presumptive seminiferous tubules and rete testis tubules and causes the cortical sex cords to regress. Anti-Müllerian hormone produced by the Sertoli cells then causes the paramesonephric ducts to regress and Leydig cells also develop, which in turn produce testosterone, the hormone that stimulates development of the male genital duct system, including the vas deferens and the presumptive efferent ductules.

Later on, fetal extracellular fluid (ECF) is passed through the fetal skin and umbilical cord.

Pathology


Response to tissue injury

Tissue injury is associated with reversible and irreversible changes of the cell membrane. Potassium is transferred out of the cell and sodium is transferred in accompanied by water. This leads to cellular oedema and a reduction in protein synthesis. There is a switch to anaerobic metabolism. Glycogen is used for energy resulting in lactate production and a drop in pH.

Intracellular enzymes including lactate dehydrogenase, troponins, and creatinine phosphokinase become activated in association with mitochondrial damage. Lysosomal rupture results in release of lysosomal enzymes and autolysis followed by nuclear death.

Tissue growth and differentiation

Growth and differentiation aim to maintain the normal structure of a particular tissue. In tissues with continuous cell loss (blood, skin, mucosa), lost cells are continuously replaced. Stem cells frequently differentiate into a mature form during this process. In the skin, as superficial keratinized cells are shed, basal cells proliferate to replace them. The newly produced basal cells differentiate into squamous cells. When the cell turnover rate is normal,

Figure 1.12 Indifferent stages of the external genitalia, approximately 6 weeks.

the skin appears histologically normal but if the rate is greatly increased, cells do not fully mature, and abnormalities are seen both on physical examination and histologically. The rate of cell proliferation is determined by the cell cycle and controlled by a variety of growth factors and receptors, and regulated by growth control genes. Many of the cellular proto-oncogenes encode for growth factors for receptors.

Placental pathology

The placental involvement in the pathogenesis of pre-eclampsia and particularly the link between pre-eclampsia and reduced placental perfusion has long been recognized (13).

The main defect seems to be related to endovascular trophoblast invasion. In pre-eclampsia, myometrial arteries fail to adapt to physiological change. Trophoblast invasion is impaired. Acute atherosis is common. Blood flow into the intervillous space is therefore decreased in pre-eclampsia.

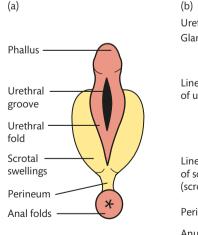
Fetal growth restriction is associated with reduced uteroplacental blood flow, which in turn can be secondary to defective placentation.

Morphological abnormalities of the uterine arteries can be present in cases of fetal growth restriction.

Microbiology

Bacteriology

Bacteria are single-cell prokaryotic microorganisms. They have a single chromosome that is not enclosed in a nuclear membrane. They can have four shapes: cocci (spheres), bacilli (rods), spirilla (spirals), and vibrios (comma-shaped). Genetic information is encoded in the cell DNA. There are two types: chromosomal DNA and extrachromosomal DNA.


Bacterial metabolism is a balance between anabolic and catabolic functions. Their ability to utilize carbohydrates and convert them to glucose as well as oxygen requirement is used to characterize bacteria:

- Obligate anaerobes: oxygen is toxic.
- Aerotolerant anaerobes: anaerobic metabolism, but tolerant to the presence of oxygen.
- Facultative anaerobes: can grow in both anaerobic as well as aerobic conditions.
- Obligate aerobes: require oxygen to grow.
- Microaerophilic organisms: require low oxygen levels only; high levels may be inhibitory.

Bacteria can be Gram positive or Gram negative (**Figure 1.16**). Some bacteria can suspend growth and metabolism in adverse conditions and form resistant spores. Optimum temperature range is between 20°C and 40°C.

Bacteria have four phases of growth:

- 1. Initial lag phase
- 2. Exponential growth phase
- 3. Static phase
- 4. Death phase.

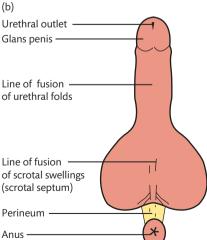
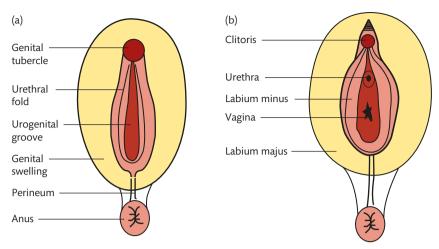



Figure 1.13 Development of the external genitalia in the male at (a) 10 weeks and (b) in the newborn. Genital tubercle extends rapidly to form the phallus, later the penis. Urethral folds close the urogenital sinus and genital swellings become scrotal swellings.

Reproduced from Robert Wilkins, Simon Cross, Ian Megson, and David Meredith, Reproduction and development, Oxford Handbook of Medical Sciences, 2011, with permission from Oxford University Press.

Figure 1.14 Development of the external genitalia in the female at (a) 5 months and (b) in the newborn. Genital tubercle elongates slightly, forming the clitoris. Urethral folds become labia minora and the urogenital sinus remains open. Genital swellings form the major labia.

Diagnosis of bacterial infection: bacteria are visible under direct microscopy. On a culture they are grown on solid agar or in liquid media and form visible colonies.

Control of infection

Antibiotics, also known as antibacterials, are used in the treatment and prevention of bacterial infections. They act by killing bacteria or inhibiting their growth. Different types of antibiotics have differences in chemical structure, mode of action, or spectrum of effect. Broad-spectrum antibiotics target a wide range of bacteria whereas narrow-spectrum ones target specific types. Antibiotics with bactericidal activities act on the bacterial cell wall (beta-lactam antibiotics: penicillins and cephalosporins as well as vancomycin and teicoplanin) or the cell membrane (polymyxins). Other bactericidal antibiotics target essential bacterial enzymes (rifamycins, lipiarmycin, quinolones, and sulphonamides). Bacteriostatic antibiotics inhibit protein synthesis (macrolides, lincosamides, and tetracyclines).

Sterilization is a process of eradication of microorganisms including the spores.

Disinfection is the removal of all actively dividing organisms. Components of disinfection include cleaning, heat, and chemicals.

Virology

A virus contains a nucleic acid (DNA or RNA) and is surrounded by a protein coat. There is no cytoplasm. Viruses must enter the host cell by endocytosis for their own replication. The virus first adheres to the host cell by binding to a specific receptor molecule.

A viral infection (Table 1.1) (14, p. 152) can cause cell death but can also cause a latent infection remaining in the host cell for many years in a dormant state.

Parasitology

Parasites are unicellular eukaryotic organisms. They can reproduce by simple asexual binary fission or a complex sexual cycle. The protozoa are larger than bacteria.

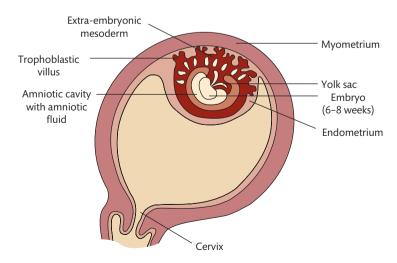
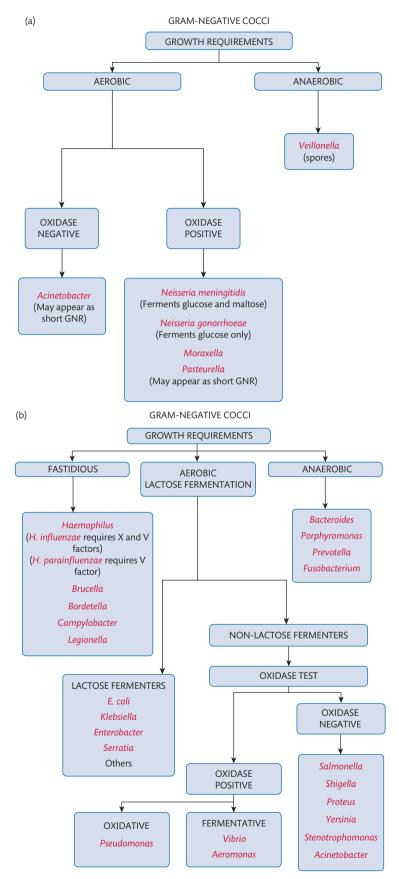



Figure 1.15 The placenta in relation to adjacent structures during early pregnancy.

Reproduced from Robert Wilkins, Simon Cross, Ian Megson, and David Meredith, Reproduction and development, Oxford Handbook of Medical Sciences, 2011, with permission from Oxford University Press.

Figure 1.16 (a) Identification of Gram-negative cocci. (b) Identification of Gram-negative rods. (c) Identification of Gram-positive cocci. (d) Identification of Gram-positive rods. GNR, Gram-negative rods.

Reproduced from M. Estee Torok, Ed Moran, and Fiona Cooke, Bacteria, Oxford Handbook of Infectious Diseases and Microbiology, 2016, with permission from Oxford University Press.

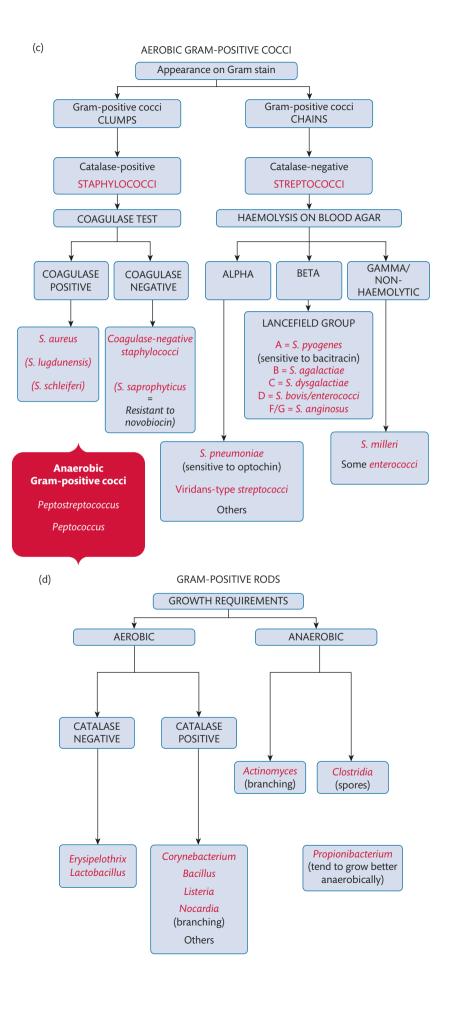


Table 1.1 Diagnosis of viral infection

Technique	Advantages	Disadvantages
Electron	Can see if any virus present	Expensive, time-consuming, requirement for complex equipment
Tissue culture	Virus cultures can be made available for further analysis	Slow, expensive
Enzyme immunoassay	Quick, automated, immunoglobulin M assays can diagnose recent infection	Not appropriate for all viruses
Fluorescence microscopy	Mainly for respiratory infections	Expensive
Polymerase chain reaction	Quick, highly sensitive, can be automated	Expensive DNA extraction can be difficult

Intestinal protozoa are common in environments with poor hygiene. *Entamoeba histolytica* is an intestinal amoeba and causes amoebic dysentery. It spreads via the portal veins and may cause amoebic liver abscess. *Giardia lamblia* is a binucleate flagellate protozoan. It causes chronic diarrhoea. *Cryptosporidium parvum* spreads via contaminated drinking water.

Malaria is caused by four types of *Plasmodium: P. falciparum, P. vivax, P. ovale*, and *P. malariae*. The infection is spread by the bite of female *Anopheles* mosquitos and usually occurs in tropical and subtropical areas.

Trypanosoma is spread by the bite of an infected tsetse fly and is prevalent in tropical Africa. It can enter red cells, the nervous system, and the reticuloendothelial system and can also affect the myocardium. Clinical symptoms and signs include fever, drowsiness, coma, and hepatosplenomegaly.

Toxoplasma gondii is the cause of toxoplasmosis. The definitive host of the trophozoites is the cat. Reproduction takes place in its gastrointestinal tract. Humans can become infected either by handling soil contaminated by cat faeces or ingesting infected undercooked meat.

Trichomonas vaginalis is a protozoan that can cause vaginal and urethral infections. It is transmitted sexually and can cause vulvovaginal irritation with a yellow or green, frothy, 'fishy'-smelling discharge.

Mycology

Fungi are eukaryotic organisms, commonly multicellular. The optimal growth temperature for the majority of fungi is between 25°C and 35°C. They are predominantly aerobic but many yeasts can produce alcohol by fermentation as an end product of anaerobic metabolism. They mainly reproduce by the production of asexual spores.

The main groups of pathogenic fungi are the following:

- Moulds: these form powdery colonies on culture due to the presence of abundant spores. Dermatophytes responsible for skin, hair, and nail infections belong to this group.
- True yeasts: unicellular, round or oval fungi. Reproduction is by budding from the parent cell. They appear as characteristically creamy colonies. A major pathogen in this group is *Cryptococcus* neoformans.

- Yeast-like fungi: these appear as round or oval cells and reproduce by budding. The major pathogen in this group is *Candida*, which causes vaginal candidiasis.
- Dimorphic fungi: *Histoplasma capsulatum* is a common member of this group. Infection is usually asymptomatic but may cause lung calcifications.

Immunology

Adaptive immunity

There are four fundamental features of adaptive immunity:

- 1. Memory
- 2. Specificity
- 3. Diversity
- 4. Tolerance to self.

Memory: the first contact with an infectious agent imparts the memory and then subsequent infection is repelled (i.e. chickenpox). The primary response against a specific antigen occurs on first contact, is slower, and is less vigorous. Future responses are rapid and more efficient.

Specificity: the adaptive immune system is specific to particular pathogens. Contact with one pathogen does not provide protection against other pathogens.

Diversity: this feature adds to the ability to combat different infections. Diversity is partly genetically encoded, but is also the result of recombination between gene segments (15) (Figure 1.17).

Tolerance: tolerance to self-antigens is established in early life. Circulating components, which reach the developing lymphoid system in the perinatal period, induce a permanent self-tolerance.

Cellular elements of adaptive immunity

T cells: these are lymphocytes derived from bone marrow stem cells which develop and differentiate in the thymus before travelling down to peripheral lymphoid tissue. There are three main types of T cells: T-helper, suppressor, and cytotoxic cells.

B cells: these are responsible for antibody production. B cells originate from stem cells in the bone marrow and develop and differentiate there.

Null cells: these lymphocytes express neither T- nor B-cell surface markers. However, they do express a mixture of lymphocyte and macrophage surface markers. They bind via the Fc receptor and kill the target cells. Hence, they are also called killer cells.

Antigen-presenting cells (APCs): antigen presentation is the process by which cells express molecules recognizable by T cells. These APCs take up antigen and process and modify it into an immunogenic form before presenting it along with major histocompatibility complex molecules to T cells.

Immunoglobulins, complement, and cytokines are the three principal humoral elements of adaptive immunity.

Innate immunity

Cellular elements of innate immunity are phagocytes and natural killer (NK) cells. The soluble elements are complement, acute phase proteins, and interferon.