Companion Web Site:

Neurophysiology in Neurosurgery
Vedran Deletis, Jay L. Shils, Francesco Sala, Kathleen Seidel, Editors

Resources available:

- Chapter 2 - Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system (Video 2.1)
- Chapter 9 - Cortical and subcortical brain mapping (Videos 9.1, 9.2)
- Chapter 12 - Neurophysiological identification of long sensory and motor tracts within the spinal cord (Videos 12.1, 12.2, 12.3)
- Chapter 15 - Intraoperative monitoring of the vagus and laryngeal nerves with the laryngeal adductor reflex (Videos 15.1, 15.2)
- Chapter 16 - Bringing the masseter reflex into the operating room (Video 16.1)
- Chapter 24 - Surgery of the face (Video 24.1)
- Chapter 29 - Neurophysiological monitoring during endovascular procedures on the spine and the spinal cord (Video 29.1)
- Chapter 34 - Neurophysiological monitoring during neurosurgery for movement disorders (Video 34.1)
- Chapter 36 - Deep brain stimulation for treatment patients in vegetative state and minimally conscious state (Videos 36.1, 36.2, 36.3, 36.4, 36.5)
- Chapter 37 - Neuromonitoring for spinal cord stimulation placement under general anesthesia (Videos 37.1, 37.2)
Fred J. Epstein,
(1937 - 2006)

and

Vahe E. Amassian
(1924 - 2013)
This book is dedicated to two extraordinary men, Vahe Amassian and Fred Epstein. Both of these extraordinary individuals changed our professional lives and made a significant impact on the fields of intraoperative neurophysiology and neurosurgery.

Vahe was French-born neurophysiologist, from Armenian parents, educated in the United Kingdom, where he made part of his professional carrier as a neurophysiologist, and later on moved to the United States where he continued to work with great success and achievement. Vahe’s work on the physiology of the nervous system describing D and I waves of corticospinal neurons [1] was the basis for the development of present methodologies for intraoperative monitoring of motor-evoked potentials. Vahe was actively involved throughout the development of this methodology. Vahe generously shared his enormous intellectual talent and his vast knowledge. Vahe was always an inspiration for us and our colleagues. Vahe was the quintessential great teacher and mentor you remember for life.

Fred was larger than life. Growing up he battled with circumstances that made every academic achievement a hard-earned victory. He beat that, and went on to reach further. Having become an accomplished and leading pediatric neurosurgeon, he developed pioneering surgeries in the brainstem and spinal cord. In doing this he realized the potential of intraoperative neurophysiology. Thus he was a very early advocate of the utilization of intraoperative neurophysiologic techniques to make complex operations in critical areas safer, better, and possible at all. As a world-renowned neurosurgeon he said, “Monitoring is the most interesting thing we do here!”

Fred had an amazing ability to see forest, when most of us only saw trees. And that applied to his vision of intraoperative neurophysiology. Following this vision he was instrumental in many of intraoperative neurophysiology’s developments and this book is testament to the fact that he was right.

Vedran Deletis and Karl Kothbauer

Reference

I

INTRODUCTION TO INTRAOPERATIVE NEUROPHYSIOLOGY

1. Animal and human motor system neurophysiology related to intraoperative monitoring
 VAHE E. AMASSIAN
 1.1 Introduction
 1.2 Corticospinal responses
 1.3 Muscle responses
 1.4 References
 3

2. Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system
 VEDRAN DELETIS
 2.1 Intraoperative monitoring of the motor system: a brief history
 2.2 New methodologies
 2.3 Methodological aspects of transcranial electrical stimulation during general anesthesia
 2.4 Recording of MEPs over the spinal cord (epidural and subdural spaces) using single-pulse stimulation technique
 2.5 Recording of motor-evoked potentials in limb muscles elicited by a multipulse stimulating technique
 2.6 Conclusion
 2.7 References
 17

3. Monitoring somatosensory evoked potentials
 DAVID B. MACDONALD
 3.1 Introduction
 35

4. Neurophysiology of the visual system: basics and intraoperative neurophysiology techniques
 KUNIHIKO KODAMA AND TETSUYA GOTO
 4.1 Introduction
 4.2 Historical review
 4.3 Neurophysiology of the visual pathway
 4.4 Recording of intraoperative flash visual evoked potentials
 4.5 Results
 4.6 Optic nerve action potentials and evoked potentials
 4.7 Monitoring and mapping the posterior visual pathway
 4.8 Conclusion
 4.9 References
 4.10 The neural generators of the auditory brainstem response
 53

5. Neurophysiology of the auditory system: basics and ION techniques
 AAGE R. MØLLER
 5.1 The auditory nerve
 5.2 History of recordings of the auditory brainstem response
 5.3 Generation of far-field-evoked potentials
 5.4 Intraoperative neurophysiological monitoring of the auditory brainstem response
 5.5 Detection of signs of hearing loss from manipulations of the auditory nerve
 5.6 Recording directly from the exposed auditory nerve
 5.7 Recording of the response from the cochlear nucleus
 5.8 What to report to the surgeon?
 5.9 The neural generators of the auditory brainstem response
 5.10 Use of auditory brainstem response in monitoring to detect changes in the function of the brainstem
 5.11 References
 65

6. Intraoperative neurophysiological monitoring of the sacral nervous system
 DAVID B. VODUŠEK AND VEDRAN DELETIS
 6.1 Introduction
 6.2 Functional anatomy
 6.3 Monitoring somatosensory evoked potentials
 6.4 Monitoring motor evoked potentials
 6.5 Monitoring of the sacral parasympathetic nervous system
 6.6 Conclusion
 6.7 References
 87

vi
III

NEUROPHYSIOLOGY OF BRAINSTEM AND SPINAL CORD REFLEXES

15. Intraoperative monitoring of the vagus and laryngeal nerves with the laryngeal adductor reflex

MARIA J. TÉLLEZ, SEDAT ULKATAN AND CATHERINE F. SINCLAIR

- **15.1 Introduction**
- **15.2 History**
- **15.3 Methodology**
- **15.4 Examples**
- **15.5 Conclusion**

- **References**

- **209**

16. Bringing the masseter reflex into the operating room

MARIA J. TÉLLEZ AND SEDAT ULKATAN

- **16.1 Introduction**
- **16.2 History**
- **16.3 Methodology**
- **16.4 Examples**
- **16.5 Conclusion**

- **220**

17. Blink reflex

ISABEL FERNÁNDEZ-CONEJERO AND VEDRAN DELETIS

- **17.1 Introduction**
- **17.2 Methodology**
- **17.3 Anesthetic considerations**
- **17.4 Clinical assessment/results**
- **17.5 Practical applications**
- **17.6 Summary**

- **229**

18. The posterior root-muscle reflex

KAREN MINASSIAN, BRIGITTA FREUNDL AND URSULA S. HOFSTOEETTER

- **18.1 Introduction**
- **18.2 History**
- **18.3 Anatomy of the posterior roots**
- **18.4 Methodologies for evoking posterior root-muscle reflexes**

- **239**

IV

INTRAOPERATIVE NEUROPHYSIOLOGY: SURGICAL PERSPECTIVE

19. Functional approach to brain tumor surgery: awake setting

LORENZO BELLO, MARCO ROSSI, MARCO CONTI NIBALI, TOMMASO SCIORTINO, MARCO RIVA AND FEDERICO PESSINA

- **19.1 Introduction**
- **19.2 Rationale of surgical treatment**
- **19.3 The concept of functional neuro-oncology: resection according to functional boundaries**
- **19.4 Preoperative workup**
- **19.5 Decision for surgery**
- **19.6 Intraoperative setup**
- **19.7 Surgical time**
- **19.8 How to manage intraoperative complications**
- **19.9 Functional results of surgery**
- **19.10 Conclusion**

- **257**

20. Surgery of brain tumors asleep

DAVIDE GIAMPICCOLO, CRISTIANO PARISI, VINCENZO TRAMONTANO AND FRANCESCO SALA

- **20.1 Introduction**
- **20.2 Cortical mapping**
- **20.3 Monitoring**
- **20.4 Subcortical mapping**
- **20.5 Conclusion**

- **271**

21. Surgery and intraoperative neurophysiological monitoring for aneurysm clipping

ANDREA SZELENYI AND GEORG NEULOH

- **21.1 Introduction**
- **21.2 Somatosensory-evoked potentials**
- **21.3 Motor-evoked potentials**
- **21.4 Early auditory-evoked potentials**
- **21.5 Visual-evoked potentials**
- **21.6 General remarks for safety considerations and anesthesia**
- **21.7 Intraoperative Neuromonitoring (ION) and surgical workflow**
- **21.8 Surgical aspects in cerebrovascular surgery**
- **21.9 Vascular territories and recommended recordings**

- **283**
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.10 Temporary vessel occlusion</td>
<td>290</td>
</tr>
<tr>
<td>21.11 Permanent vessel occlusion</td>
<td>291</td>
</tr>
<tr>
<td>21.12 Special remarks on arteriovenous malformation surgery</td>
<td>291</td>
</tr>
<tr>
<td>21.13 Surgical reaction on ION alteration and duration of monitoring</td>
<td>291</td>
</tr>
<tr>
<td>21.14 Conclusion</td>
<td>291</td>
</tr>
<tr>
<td>References</td>
<td>292</td>
</tr>
<tr>
<td>22. Surgery of brainstem lesions</td>
<td>295</td>
</tr>
<tr>
<td>FRANCESCO SALA, ALBERTO D’AMICO AND ALBINO BRICOLO</td>
<td></td>
</tr>
<tr>
<td>22.1 Introduction</td>
<td>295</td>
</tr>
<tr>
<td>22.2 Patient selection and rationale for surgery</td>
<td>295</td>
</tr>
<tr>
<td>22.3 General principle of the surgical strategy</td>
<td>296</td>
</tr>
<tr>
<td>22.4 Postoperative care</td>
<td>303</td>
</tr>
<tr>
<td>22.5 Neurophysiological monitoring</td>
<td>304</td>
</tr>
<tr>
<td>22.6 Conclusion</td>
<td>306</td>
</tr>
<tr>
<td>References</td>
<td>306</td>
</tr>
<tr>
<td>23. Continuous dynamic mapping during surgery of large vestibular schwannoma</td>
<td>309</td>
</tr>
<tr>
<td>KATHLEEN SEIDEL, IRENA ZUBAK AND ANDREAS RAABE</td>
<td></td>
</tr>
<tr>
<td>Abbreviations</td>
<td>309</td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>309</td>
</tr>
<tr>
<td>23.2 Neurophysiological setup</td>
<td>310</td>
</tr>
<tr>
<td>23.3 Anatomy in the cerebellopontine angle</td>
<td>311</td>
</tr>
<tr>
<td>23.4 What current neurophysiological methods provide?</td>
<td>312</td>
</tr>
<tr>
<td>23.5 Continuous dynamic mapping as an adjunct</td>
<td>312</td>
</tr>
<tr>
<td>23.6 What might be the best strategy to protect the facial nerve?</td>
<td>314</td>
</tr>
<tr>
<td>23.7 Limitations</td>
<td>314</td>
</tr>
<tr>
<td>23.8 Further applications in skull base surgery</td>
<td>314</td>
</tr>
<tr>
<td>23.9 Summary</td>
<td>315</td>
</tr>
<tr>
<td>References</td>
<td>316</td>
</tr>
<tr>
<td>24. Surgery of the face</td>
<td>319</td>
</tr>
<tr>
<td>SEDAT ULKATAN AND GREGORY LEVITIN</td>
<td></td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>319</td>
</tr>
<tr>
<td>24.2 Anatomy, physiology, and surgery of the facial nerve</td>
<td>320</td>
</tr>
<tr>
<td>24.3 Methodology</td>
<td>322</td>
</tr>
<tr>
<td>24.4 Continuous compound muscle action potential monitoring</td>
<td>327</td>
</tr>
<tr>
<td>24.5 Intraoperative mapping</td>
<td>327</td>
</tr>
<tr>
<td>24.6 Warning criteria and correlation with outcome</td>
<td>329</td>
</tr>
<tr>
<td>24.7 Our experience on facial nerve monitoring and comparison with other studies</td>
<td>330</td>
</tr>
<tr>
<td>24.8 Conclusion</td>
<td>332</td>
</tr>
<tr>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>25. Carotid endarterectomy</td>
<td>335</td>
</tr>
<tr>
<td>MICHAEL J. MALCHAREK, GERHARD SCHNEIDER AND MICHAEL DINKEL</td>
<td></td>
</tr>
<tr>
<td>25.1 Introduction</td>
<td>335</td>
</tr>
<tr>
<td>25.2 Intraoperative neurophysiologic monitoring for carotid endarterectomy</td>
<td>339</td>
</tr>
<tr>
<td>25.3 Conclusion</td>
<td>347</td>
</tr>
<tr>
<td>References</td>
<td>347</td>
</tr>
<tr>
<td>26. Surgery for intramedullary spinal cord tumors and syringomyelia</td>
<td>351</td>
</tr>
<tr>
<td>NICOLE FRANK AND KARL F. KOTHBAUER</td>
<td></td>
</tr>
<tr>
<td>26.1 Introduction</td>
<td>351</td>
</tr>
<tr>
<td>26.2 Neurophysiology</td>
<td>352</td>
</tr>
<tr>
<td>26.3 Anesthesia</td>
<td>353</td>
</tr>
<tr>
<td>26.4 Clinical assessment and correlation</td>
<td>354</td>
</tr>
<tr>
<td>26.5 Feasibility and practicality of monitoring</td>
<td>354</td>
</tr>
<tr>
<td>26.6 Observations on the behavior of MEPs during spinal cord tumor surgery and their practical consequences</td>
<td>357</td>
</tr>
<tr>
<td>26.7 Mapping of individual pathways in the spinal cord</td>
<td>358</td>
</tr>
<tr>
<td>26.8 Illustrative cases</td>
<td>359</td>
</tr>
<tr>
<td>26.9 Conclusion</td>
<td>362</td>
</tr>
<tr>
<td>References</td>
<td>362</td>
</tr>
<tr>
<td>27. Intraoperative neurophysiological monitoring in tethered cord surgery</td>
<td>365</td>
</tr>
<tr>
<td>CLAUDIA PASQUALI, VINCENZO TRAMONTANO AND FRANCESCO SALA</td>
<td></td>
</tr>
<tr>
<td>27.1 Introduction</td>
<td>365</td>
</tr>
<tr>
<td>27.2 Tethered cord etiopathogenesis</td>
<td>366</td>
</tr>
<tr>
<td>27.3 Anesthesia</td>
<td>369</td>
</tr>
<tr>
<td>27.4 Intraoperative neurophysiology techniques during tethered cord surgery</td>
<td>369</td>
</tr>
<tr>
<td>27.5 Monitoring techniques</td>
<td>369</td>
</tr>
<tr>
<td>27.6 Mapping techniques</td>
<td>372</td>
</tr>
<tr>
<td>27.7 Surgical use of intraoperative neurophysiology in lipomas exertion</td>
<td>373</td>
</tr>
<tr>
<td>27.8 Conclusion</td>
<td>376</td>
</tr>
<tr>
<td>References</td>
<td>377</td>
</tr>
<tr>
<td>28. Intraoperative neuromonitoring and complex spine surgery</td>
<td>381</td>
</tr>
<tr>
<td>ALFREDO GUIROY, ALEXANDER CANDOCIA AND RICARDO B.V. FONTES</td>
<td></td>
</tr>
<tr>
<td>28.1 Introduction</td>
<td>381</td>
</tr>
<tr>
<td>28.2 Complex spine instrumentation and deformity surgery</td>
<td>382</td>
</tr>
<tr>
<td>28.3 Spinal instability</td>
<td>385</td>
</tr>
<tr>
<td>28.4 Monitoring loss protocol</td>
<td>386</td>
</tr>
<tr>
<td>28.5 Conclusion</td>
<td>393</td>
</tr>
<tr>
<td>References</td>
<td>393</td>
</tr>
<tr>
<td>28.1 Spinal cord vascularization and ischemia</td>
<td>395</td>
</tr>
<tr>
<td>FRANCESCO SALA AND YASUNARI NIIMI</td>
<td></td>
</tr>
<tr>
<td>29. Neurophysiological monitoring during endovascular procedures on the spine and the spinal cord</td>
<td>395</td>
</tr>
<tr>
<td>FRANCESCO SALA AND YASUNARI NIIMI</td>
<td></td>
</tr>
</tbody>
</table>
29.2 Neurophysiological monitoring
29.3 Endovascular treatment of vascular malformations and tumors of the spine and the spinal cord
29.4 Conclusion
References

30. Intraoperative neurophysiology of the peripheral nervous system
LEO HAPPEL AND DAVID KLINE
30.1 Background
30.2 Nerve regeneration
30.3 Equipment for intraoperative recordings
30.4 Electrodes for intraoperative recording and stimulation
30.5 Anesthetic considerations
30.6 Recording compound nerve action potentials intraoperatively
30.7 Criteria for appraising a compound nerve action potentials
30.8 Operative results
30.9 Troubleshooting
30.10 Conclusion
References

31. An intraoperative neurophysiological monitoring method for testing functional integrity of the low extremity peripheral nerves during hip surgery
ALEJANDRA CLIMENT, FEDERICO DE MEO, MANUEL RIBAS, ANTONIO COSCUJUELA, JOSE LUIS AGULLO, SEDAT ULKATAN AND VEDRAN DELETIS
31.1 Introduction
31.2 Material and methods
31.3 Results
31.4 Discussion
31.5 Conclusion
References
Further reading

32. Surgery for epilepsy
MARK M. STECKER AND JEFFREY E. ARLE
32.1 Introduction
32.2 Preoperative evaluation
32.3 Surgical options
32.4 Electrococtographic monitoring
32.5 Anesthetic considerations
32.6 Electrodes
References

33. Intraoperative neurophysiological monitoring during microvascular decompression of cranial nerves
CARLA ARAUJO FERREIRA, PARTHASARATHY THIRUMALA, DONALD J. CRAMMOND, RAYMOND F. SEKULA JR. AND JEFFREY R. BALZER
33.1 History
33.2 Pathologies
33.3 Radiologic considerations
33.4 Pathogenic mechanisms underlying vascular compression
33.5 Surgical treatment
33.6 Monitoring modalities for microvascular decompression
33.7 Microvascular decompression and intraoperative neurophysiology: practical implementation and pearls
33.8 Conclusion
References
Further reading

34. Neurophysiological monitoring during neurosurgery for movement disorders
JAY L. SHILS, RYAN KOCHANSKI, ALIREZA BORGHEI AND SEPEHR SANI
34.1 Introduction
34.2 History and theory
34.3 Operating room environment and basic equipment
34.4 Technique for movement disorder surgery
34.5 Conclusion
References

35. Neurosurgical lesioning-procedures for spasticity and focal dystonia
MARC SINDOU, ANDREI BRINZEU AND GEORGE GEORGOULIS
35.1 Introduction
35.2 Lesioning procedures
35.3 Intraoperative neurophysiology as an aid to surgery
35.4 Indications for surgery
35.5 Conclusion
References

36. Deep brain stimulation for treatment patients in vegetative state and minimally conscious state
DARKO CHUDY, MARINA RAGUŽ AND VEDRAN DELETIS
36.1 Introduction
36.2 A short history of deep brain stimulation for vegetative state and minimally conscious state
36.3 Patients and methods
36.4 Neurological evaluation
36.5 Selection criteria for deep brain stimulation unit implantation
36.6 Surgical targeting and procedure
36.7 Results

FUNCTIONAL NEUROSURGERY
36.8 Discussion 520
36.9 Conclusion 520
References 520

37. Neuromonitoring for spinal cord stimulation placement under general anesthesia 523
JAY L. SHILS, MARINA MOUL AND JEFFREY E. ARLE

37.1 Introduction 523
37.2 Methods 525
37.3 Reliability of the techniques 531
37.4 Conclusion 532
References 532

38. Neurosurgical lesioning procedures in spinal cord and dorsal root entry zone for pain 535
MARC SINDOU, GEORGE GEORGOULIS AND ANDREI BRINZEU

38.1 Introduction 535
38.2 The surgical lesioning procedures directed to the spinal cord 535
38.3 The procedures for dorsal root entry zone—lesioning 539
38.4 Intraoperative neurophysiology 545
38.5 Conclusion 548
References 548

39. Selective dorsal rhizotomy 551
HANNES HABERL

39.1 History 551
39.2 Patient selection 553
39.3 Surgery 555
39.4 Physiotherapy 560
39.5 Follow-up 560
39.6 Results 560
39.7 Complications 560
39.8 Conclusion 561
References 561
Further reading 564

VI
OTHER IMPORTANT ASPECTS OF INTRAOPERATIVE NEUROPHYSIOLOGY

40. Principles of anesthesia 567
TOD B. SLOAN AND ANTOUN KOHT

40.1 Anesthesia: safety, comfort, and facilitation of the procedure 567
40.2 Medical and physiological management 567
40.3 Patient positioning 568
40.4 Pharmacologic management 568
40.5 Conclusion: summary of anesthesia choice and management 575
References 576

41. Safety 581
DAVID B. MACDONALD, KATHLEEN SEIDEL AND JAY L. SHILS

41.1 Introduction 581
41.2 Electrical safety 581
41.3 Procedure-specific safety 588
41.4 Infection control 592
41.5 Essential performance 593
41.6 Conclusion 594
References 594

42. Costs and benefits of intraoperative neurophysiological monitoring in spinal surgeries 597
JOHN P. NEY AND DAVID N. VAN DER GOES

42.1 Introduction 597
42.2 General considerations for cost-effectiveness analysis 597
42.3 Cost-effectiveness analysis in spine ION 599
42.4 Cost and outcomes research using “big data” 601
42.5 Future directions in cost and outcomes research in ION for spine surgeries 603
References 603

43. Evidence-based medicine and intraoperative neurophysiology 607
ROBERT N. HOLDEFER AND STANLEY A. SKINNER

43.1 Introduction 607
43.2 Principles of evidence-based medicine 607
43.3 Intraoperative neurophysiological monitoring and outcomes: back to basics for causal links 611
43.4 Evidence for improved outcomes with intraoperative neurophysiological monitoring 614
43.5 How accurate are my SEPs and MEPs? 615
43.6 Moving forward with the evidence base of intraoperative neurophysiological monitoring 619
43.7 Glossary of contingency terms for intraoperative neurophysiological monitoring tests 620
References 621

44. The intraoperative neurophysiological monitoring team 623
STANLEY A. SKINNER AND ROBERT N. HOLDEFER

44.1 Introduction: airliners and operating rooms 623
44.2 ION teamwork and models of care 624
44.3 Injury prediction versus injury prevention 625
44.4 Systematic review of intraoperative teamwork 625
44.5 Medical error avoidance 627
44.6 Optimizing current models of ION care 628
44.7 Conclusion 632
References 632

Conclusion 637
Index 639

Further reading 564
List of contributors

Jose Luis Agullo Hip Unit, Department of Orthopedics, Bellvitge Hospital, Hospitalet del Llobregat, Barcelona, Spain
Vahe E. Amassian† Departments of Physiology and Pharmacology, and Neurology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY, United States
Jeffrey E. Arle Department of Neurosurgery, Beth Israel Medical Center, Mt. Auburn Hospital, Harvard Medical School, Boston, MA, United States
Beatriz Arranz Arranz Gregorio Marañón University Hospital, Madrid, Spain
Jeffrey R. Balzer Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
Lorenzo Bello Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
Alireza Borghei Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
Azize Bostro¨m Robert Janker Clinic, Bonn, Germany
Albino Bricolo† Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
Andrei Brinzeu Department of Neuroscience, University of Medicine and Pharmacy “Victor Babes” Timisoara, Timisoara, Romania
Alexander Candocia Department of Anesthesiology, Rush University Medical Center, Chicago, IL, United States
Darko Chudy Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia; Croatian Institute for Brain Research, Center of Excellence in Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, Croatia; Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
Alejandra Climent Intraoperative Neurophysiology Unit, Department of Pediatric Neurology, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
Antonio Coscujuela Hip Unit, Department of Orthopedics, Bellvitge Hospital, Hospitalet del Llobregat, Barcelona, Spain
Donald J. Crammond Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
Federico de Meo Hip Unit, Department of Orthopedics ICATME, Quiron Dexeus Hospital, Barcelona, Spain; GIOMI Institute “F. Scalabrino”, Messina, Italy
Vedran Deletis Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia; Albert Einstein College of Medicine, New York, NY, United States
Michael Dinkel Department of Anesthesiology and Intensive Care Medicine, Röhn Klinikum Campus Bad Neustadt, Bad Neustadt (Saale), Germany
Alberto D’Amico Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
Fred Epstein† Department of Neurosurgery, Beth Israel Medical Center, New York, NY, United States
Isabel Fernán­dez-Conejero Department of Clinical Neurophysiology, University Hospital of Bellvitge, Barcelona, Spain
Carla Araujo Ferreira Neurophysiology Center, University Hospital of The Federal University of Minas Gerais, Belo Horizonte, Brazil
Ricardo B.V. Fontes Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
Luca Fornia Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milan, Italy

†deceased
List of contributors

Nicole Frank Department of Neurosurgery, University of Basel, Basel, Switzerland

Brigitta Freundl Neurological Center, Maria Theresien Schloessel, Otto Wagner Hospital, Vienna, Austria

Lorenzo Gay Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy

George Georgoulis Department of Neurosurgery, General Hospital of Athens “G. Gennimatas”, Athens, Greece; Medical School of Athens, University of Athens, Athens, Greece

Davide Giampiccolo Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy

Tetsuya Goto St. Marianna University School of Medicine, Miyamaeku, Kawasaki, Japan

Alfredo Guiroy Neurosurgeon, Hospital Español, Mendoza, Argentina

Hannes Haberl Division of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Bonn, Germany

Leo Happel Louisiana State University Medical Center, New Orleans, LA, United States

Ursula S. Hofstoetter Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria

Robert N. Holdefer Rehabilitation Medicine, University of Washington, Seattle, WA, United States

David Kline Louisiana State University Medical Center, New Orleans, LA, United States

Ryan Kochanski Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States

Kunihiho Kodama Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan

Antoun Koht Departments of Anesthesiology, Neurological Surgery, and Neurology, Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States

Karl F. Kothbauer Division of Neurosurgery, Luzerner Kantonsspital, Lucerne, Switzerland

Antonella Leonetti Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy

Gregory Levitin Department of ENT, Mount Sinai-New York Eye and Ear Infirmary, New York, NY, United States

David B. MacDonald Department of Neurosciences, Section of Neurophysiology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia

Michael J. Malcharek Division of Neuroanesthesia and Intraoperative Neuromonitoring, Department of Anesthesiology, Intensive Care and Pain Therapy, Klinikum St. Georg gGmbH, Leipzig, Germany

Karen Minassian Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Aage R. Møller School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States

Nobuhito Morota Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan

Marina Moui SpecialtyCare, Inc. Brentwood, TN, United States

Georg Neuhol Neurosurgical Clinic, University Hospital Aachen, RWTH Aachen, Aachen, Germany

John P. Ney Department of Neurology, Boston University School of Medicine, Boston, MA, United States; VA Center for Healthcare Organization and Implementation Research, Bedford, MA, United States

Marco Conti Nibali Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy

Yasunari Niimi Department of Neuroendovascular Therapy, St. Luke’s International Hospital, Tokyo, Japan

Cristiano Parisi Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy

Claudia Pasquali Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy

Federico Pessina Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milan, Italy

Guglielmo Puglisi Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy

Andreas Raabe Department of Neurosurgery, Inselspital, Bern University Hospital, Bern, Switzerland

Marina Raguz Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia; Croatian Institute for Brain Research, Center of Excellence in Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, Croatia
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuel Ribas</td>
<td>Hip Unit, Department of Orthopedics ICATME, Quiron Dexeus Hospital, Barcelona, Spain</td>
</tr>
<tr>
<td>Marco Riva</td>
<td>Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milan, Italy</td>
</tr>
<tr>
<td>Marco Rossi</td>
<td>Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy</td>
</tr>
<tr>
<td>Francesco Sala</td>
<td>Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy</td>
</tr>
<tr>
<td>Sepehr Sani</td>
<td>Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States</td>
</tr>
<tr>
<td>Gerhard Schneider</td>
<td>Department of Anesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany</td>
</tr>
<tr>
<td>Johannes Schramm</td>
<td>Neurosurgery, Medical Faculty, Bonn University, Bonn, Germany</td>
</tr>
<tr>
<td>Tommaso Sciortino</td>
<td>Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy</td>
</tr>
<tr>
<td>Kathleen Seidel</td>
<td>Department of Neurosurgery, Inselspital, Bern University Hospital, Bern, Switzerland</td>
</tr>
<tr>
<td>Raymond F. Sekula Jr.</td>
<td>Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States</td>
</tr>
<tr>
<td>Jay L. Shils</td>
<td>Department of Anesthesiology, Rush University Medical Center, Chicago, IL, United States</td>
</tr>
<tr>
<td>Catherine F. Sinclair</td>
<td>Department of Otolaryngology Head and Neck Surgery, Mount Sinai West Hospital, New York, NY, United States</td>
</tr>
<tr>
<td>Marc Sindou</td>
<td>University of Lyon 1, Lyon, France</td>
</tr>
<tr>
<td>Stanley A. Skinner</td>
<td>Abbott Northwestern Hospital, Minneapolis, MN, United States</td>
</tr>
<tr>
<td>Tod B. Sloan</td>
<td>Department of Anesthesiology, School of Medicine, University of Colorado, Aurora, CO, United States</td>
</tr>
<tr>
<td>Mark M. Stecker</td>
<td>Division of Neurology, UCSF Fresno, Fresno, CA, United States</td>
</tr>
<tr>
<td>Andrea Szelenyi</td>
<td>Clinical and Intraoperative Neurophysiology, Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany</td>
</tr>
<tr>
<td>Maria J. Téllez</td>
<td>Department of Intraoperative Neurophysiology, Mount Sinai West Hospital, New York, NY, United States</td>
</tr>
<tr>
<td>Parthasarathy Thirumala</td>
<td>Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States</td>
</tr>
<tr>
<td>Richard J. Toleikis</td>
<td>Department of Anesthesiology (Retired), Rush University Medical Center, Chicago, IL, United States</td>
</tr>
<tr>
<td>Vincenzo Tramontano</td>
<td>Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy</td>
</tr>
<tr>
<td>Sedat Ulkatan</td>
<td>Department of Intraoperative Neurophysiology, Mount Sinai West Hospital, New York, NY, United States</td>
</tr>
<tr>
<td>Javier Urriza</td>
<td>Department of Clinical Neurophysiology, Complejo Hospitalario de Navarra, Pamplona, Spain</td>
</tr>
<tr>
<td>David N. van der Goes</td>
<td>Department of Economics, University of New Mexico, Albuquerque, NM, United States</td>
</tr>
<tr>
<td>David B. Vodušek</td>
<td>Institute of Clinical Neurophysiology, Division of Neurology, University Medical Centre, Ljubljana, Slovenia</td>
</tr>
<tr>
<td>Irena Zubak</td>
<td>Department of Neurosurgery, Inselspital, Bern University Hospital, Bern, Switzerland</td>
</tr>
</tbody>
</table>
It has been 18 years since the first edition of *Neurophysiology in Neurosurgery: A Modern Approach* in 2002 was published. We are happy to present an updated review of the very latest achievements in intraoperative neurophysiology (ION) from a theoretical, methodological, and clinical perspective. We have divided the book in six sections: Part I, Introduction to Intraoperative Neurophysiology; Part II, Intraoperative Neurophysiology: Neurophysiologic Perspective; Part III, Neurophysiology of Brainstem and Spinal Cord Reflexes; Part IV, Intraoperative Neurophysiology; Surgical Perspective; Part V, Functional Neurosurgery; Part VI, Other Important Aspects of Intraoperative Neurophysiology.

Due to significant changes and new developments in the field of ION, additional chapters have been added. At the time of the first edition, in 2002, some of the chapters included neurophysiologic techniques that were either in the very early stages of development or borrowed from the clinic yet not fully adapted for their intraoperative use. Since then, some of these techniques have become standard in ION; meanwhile, new methods have been developed to monitor reflex pathways within the brainstem or to perform detailed and accurate brain and spinal cord mapping. Moreover, there has been an increasing role for ION during neuromodulation procedures. Finally, technological advances have improved the quality and interpretability of existing techniques.

As the field of ION grew, so did its popularity within the neurosurgical community. The introduction of ION to this new generation of surgeons has created the need for more skilled and well-trained intraoperative neurophysiologists and technologists.

Over the past two decades, ION has played an increasingly important role in the neurosurgeon’s intraoperative decision process, to the point that for certain procedures—for example, intramedullary spinal cord tumors, cerebral lower grade gliomas, or placement of permanent neuromodulation electrodes—the neurosurgeons modulate their surgical strategy based on the neurophysiological feedback from the ION team. Particularly in neuro-oncology where the goal is to maximize resection while minimizing morbidity, ION has demonstrated its essential role in achieving this. In addition, with the overall improvement in survival, preservation of the quality of life is a major issue when planning and performing surgery. Therefore the key concept of “safe surgery” can be guided by intraoperative neurophysiological monitoring and mapping methods. ION is no longer relegated to the realm of warning post an iatrogenic event but is now a critical medical discipline helping surgeons to decide on the appropriate course of the surgical intervention. Further, it is important to ensure that the ION team is included as part of the surgical team and to assure that the information obtained from ION interpretation is appropriately relayed to the surgeon and anesthesiologist, in a timely fashion, in order to have a beneficial impact on the procedure.

The material presented in this book is written for neurophysiologists as well as surgeons, anesthesiologists, biomedical engineers, and technologists. We hope our book will contribute to expanding the existing ION knowledge and to increase the awareness on the value of ION techniques for all the professionals involved in the surgical treatment of nervous system diseases. The material presented does not only give a historical perspective on the practice of ION but will hopefully induce a new way of thinking on how ION can minimize iatrogenic injury to the patient’s nervous system via proper application of these techniques. We hope this book will influence the way neurosurgeons apply ION to their surgical practice, aiming for a better quality of life for their patients, compared to a time when these techniques were not applied.

The editors of this book all agree that “No monitoring is better than poor monitoring,” not only does it degrade the field of neuromonitoring, but more importantly it can harm the patients that we are trying to protect.

Vedran Deletis, Jay Shils, Francesco Sala and Kathleen Seidel
1 Introduction

Intraoperative monitoring—more precisely intraoperative neurophysiological monitoring (ION)—has found its way into the practice of many surgical specialties, mainly in neurosurgery but orthopedics as well. Why has it become such a frequently used tool? The obvious reason is that it provides previously unavailable information on the functional status of neural tissue in the anesthetized patient. This introduction to this book describes why ION is used, what advantages are associated with its use, why it has become a teaching tool improving surgical techniques and tactics, and why it is helpful even when no significant changes in the data occur. The author was involved in the early stages of ION development and was a witness to its gaining a firm place in neurosurgery. Thus this is a recollection from a neurosurgeon’s perspective.

There are several positives to the use of ION:

1. detection of developing neural damage and avoidance of permanent deficits,
2. teaching the surgeon about detrimental effects of seemingly harmless surgical steps,
3. detection of adverse systemic or nonsurgical influences, and
4. reassurance to surgeon about lack of damaging effect of specific risky maneuvers.

2 Theoretical background

After the realization that evoked potential (EP) technology was available and had already been proven to be helpful in the diagnosis of spinal injury, as well as other diseases, it was shown in experimental spinal cord injury to be able to detect damage to the fiber tracts. The next step was the development of the concept of reversibility as related to the degree of injury, when a significant EP change has occurred. Thus the next logical step was the concept of ION.

To be precise, ION does not completely prevent injury, because a certain degree of impairment is necessary to induce changes in the recorded potentials. Thus the main function of ION is to indicate when damage is starting to occur, ideally before it has become irreversible or complete. Jannetta [1] coined the term—“preventive surgery”—when surgeons use ION during surgery.

In the ideal world the monitoring method would generate no false-positive or false-negative results. Motor EPs (MEPs) must be recorded with the knowledge that a potential motor deficit may affect an upper and a lower extremity and the two body halves separately or in combinations. Thus MEPs have to be interpreted precisely and carefully. If the right leg is monitored by MEP and the motor deficit occurs in the other unmonitored leg, that does not imply a false-negative monitoring event.

The concept of monitoring was not immediately welcomed by many neurosurgeons. In the early phase, I heard comments from my superiors, most likely based on the complete lack of understanding, why a neurosurgeon could possibly deal with neurophysiological recordings. “When you talk at a neurosurgical conference and mention the words ‘evoked potentials’ are you not aware that 90% of the audience falls asleep immediately?”
Or when presenting the first clinical series, a question came from the audience, “And what do you do with a tumor when the potential is lost, do you leave the tumor in?”, in a sardonic malicious tone, assuming that having to leave some tumor in automatically constitutes a kind of failure.

After the initial phase, where somatosensory evoked potentials (SEPs) were available for monitoring the sensory system supratentorial tracts or the spinal cord only, it was frequently argued that monitoring was not useful because it could not help to avoid motor deficits. It is, of course, true that one cannot expect to receive a warning about impending damage to motor fiber tracts when monitoring sensory fiber tracts. Such an observation does not constitute a false-negative monitoring [2]. Thus this criticism was misguided. In the meantime, after the introduction of MEP monitoring, both fiber tract systems could be interrogated and monitored separately or simultaneously, and this limitation from the initial phase of ION is no longer an issue. However, a low rate of false-negative and/or false-positive monitoring findings is unavoidable considering how many physiologic, anesthetic, and surgical factors are involved, let alone the occasional technical issue.

One basic problem persists throughout the whole period of ION use: when the observed signal has deteriorated, it is impossible to know whether the deterioration reflects a permanent damage to part of the fibers (shown as reduction in amplitude or delayed latency) or whether it is just a functional impairment of the monitored fiber tract with the potential of a full recovery. Similarly, when a monitored signal has been lost (e.g., the motor evoked potentials (MEP) during an insular glioma surgery), this is not automatically synonymous with permanent damage. There is a potential that the loss is reversible and that there will not be a permanent and/or significant motor deficit. However, at the very moment when the change occurs, it is impossible to tell. It has therefore become common practice for the surgeon to modify the surgery at this point, for example, cease manipulation, release traction, irrigate vessels with papaverine, and irrigate the cerebrospinal fluid (CSF) space around major blood vessels. Potential loss in ION does not precisely predict functional loss, but it still serves as a reliable indicator of an impending damage where corrective maneuvers such as stopping all manipulation will frequently show a recovery of the responses within a short time in a number of cases.

Recent technological advances in automatic artifact suppression, digital recording systems that include automatic peak latency and amplitude detection and vast data storage capabilities with the ability to superimpose earlier, and recent recordings have made monitoring more reliable and easier to interpret.

3 Detection of developing neural damage and avoidance of permanent deficits

The best argument in favor of ION use is of course its proven ability to reduce the frequency of inadvertent neurological deficits in many neurosurgical procedures. ION has been shown to prevent new deficits in a number of case series, for example, in a prospective observational study with 423 undergoing ION SEP recordings performed in all patients, brainstem auditory responses [brainstem acoustic EP (BAEP)] were recorded in 33 patients. There were 84 cases of postoperative deficit of which 68 were detected with ION. The authors reported a negative predictive value of 0.95 and a positive predictive value of 0.9. A surgical intervention triggered by monitoring occurred in 42 (9.9%) of cases. The authors concluded that in 5.2% the cases ION prevented a postoperative deficit [3]. Another example of the benefit of ION is the frequency with which facial nerve weakness was reduced after the introduction of facial nerve monitoring during acoustic neuroma surgery [4]. Similarly the rates of hearing loss after the use of BAEP monitoring during microvascular decompression surgery has decreased significantly [5]. The group in Pittsburgh reported a 7% rate of hearing loss rate after MVD for hemifacial spasm prior to the introduction of ION compared with 1.4% of 140 cases with monitoring and in the Wilkins [5] study hearing loss dropped from 6.6% of 152 cases prior to ION to zero in 109 cases with monitoring of BAEP during MVD for hemifacial spasm.

In a meta-analysis, Fehlings et al. [6] found that multimodal ION in spinal surgery was useful. Sala et al. [7] demonstrated that surgery for intramedullary tumors with the use of MEP monitoring showed better outcomes when compared with historical controls that did not use monitoring.

In a series of insular glioma cases [8], MEP monitoring lead to the surgeon’s intervention in 44% of all cases, and the intervention by the surgeon restored MEPs in 83% of those cases resulting in no or only transient new paresis when stable or restored MEPs occurred (93% of cases), whereas permanent MEP loss was associated with permanent new paresis in 7% of cases. ION use in epilepsy surgery has enabled a more complete resection of the ictogenic zone with better functional preservation and led to better seizure control [9].
4 Intraoperative neurophysiological monitoring as a teaching tool

ION has demonstrated its potential as a teaching tool for improving microsurgical techniques and the handling of delicate tissue by raising an alarm that something adverse may be occurring during specific steps of an operation. Its introduction induced a change in how to approach and manipulate certain tissues. This included what not to do when handling delicate brain areas or fiber tracts, such as the pyramidal tract or working inside the medulla oblongata. A much simpler example is the influence on how long, in what direction, and with which degree of force to retract the nervous tissue, for example, the cerebellum in microvascular decompression or a cranial nerve away from a tumor surface.

The use of ION as a teaching tool was a side effect of its implementation. Some of the alarms occurred at times when iatrogenic effects were thought to be minimal: the loss of the BAEP was observed when bringing the patient into the lateral decubitus position for a posterior fossa surgery, after opening the dura and draining the CSF, using the retractor on the cerebellum, using the retractor when opening the Sylvian fissure, losing VIIIth nerve BAEP when coagulating a tumor vessel far away from the VIIIth nerve, loss of MEPs from perforator vaso-spasm in insular glioma surgery. These observations induced the development of alternating strategies and the avoidance of certain maneuvers.

Some neurosurgeons, having used BAEP monitoring for several years, learned so much about negative effects on the preservation of BAEP that they changed their surgical techniques to such a degree that they finally stopped using the monitoring but are still able to preserve hearing in a satisfying number of their cases.

ION as a teaching tool has proven helpful in increasing our knowledge of the anatomy (e.g., brain stem nuclei) and the physiology of fiber tracts. It is justified to claim that intraoperative neurophysiological recordings have made brain stem surgery an acceptably safe procedure. By carefully analyzing the observations made during surgery with ION, we learned a lot about the limitations of the surgical techniques used to manipulate these tissues. A detailed discussion of what the surgeon wins and loses with ION was provided by [10].

5 Detection of adverse systemic or nonsurgical influences

The usefulness of ION is not only related to the early detection of potential new neurologic deficits to induce correctional intervention but it allows for the detection of systemic disturbances such as hypoxia, hypotension, or impairment originating from other factors outside of the surgical field. Examples include an SEP loss from damage to the brachial plexus due to an arm positioning issue or movement of a properly placed arm during the procedure or the loss of the MEP following a hyperextended cervical positioning. These events were unexpected during routine procedures when there was no suspicion that neural damage was possible. An early and famous example was Grundy et al.’s description of BAEP loss when the patient was turned into the lateral park bench position where the initial recordings performed with the patient lying on his back were normal [11].

6 Reassurance to surgeon about lack of damaging effect of specific risky maneuvers

The lack of an ION change is also useful, that is, the persistence of a robust signal during potentially dangerous surgical maneuvers can give reassurance to the surgeon that a neurological deficit is unlikely. This also exemplifies the educational aspect of ION. A typical example is the temporary clipping of a major artery during aneurysm surgery where a stable ION response allows the surgeon to keep the clip on as long as necessary. A related phenomenon occurs when an ION change occurs which is induced by a surgical maneuver returns to “normal” allowing the surgeon to with their manipulation, being reassured by the recovery of the potential. An example is the return of the response during temporary clipping of an important vessel with the elevation of systemic blood pressure. An impressive example of direct monitoring induced intervention with success.

The therapeutic concept of ION is based on the assumption of reversibility, where a return of the response is indicative of a reduction or reversal of the degree of iatrogenic injury. This assumption has been demonstrated many times in practice where ION changes were able to be fully reversed when the surgeon reacted after the alarm was raised. In our groups experience, stable MEPs indicate intact motor function in the monitored limb allowing us to proceed with surgery. An early reaction to MEP changes has usually allowed for the prevention of
a permanent deficit, and an irreversible MEP loss predicted either a transient or permanent new motor deficit in all cases.

ION is not without its disadvantages: it can be expensive to do; there are, of course, problems, such as unobtainable or poorly reproducible responses. Trained manpower is needed and the individuals need to have a real interest in doing ION. When not practiced on a day-to-day basis the extra time for setting it up is often considered a nuisance. And there are, of course, low rates of false-negatives and false-positive outcomes. Despite the multiple cases with reversible EP responses, it was not easy to prove statistically significant benefits in some series. A recent review investigated the effect ION had on the outcome in 5706 pediatric scoliosis procedures monitored out of a total of 32,305 procedures using data from the US National Inpatient Sample (NIS) database. Neurological complications were noted in 0.9% of ION cases and 1.4% of cases without ION use; however, this difference was not statistically significant in a multivariate analysis [12]. It is important to note that the NIS database does not always catch the procedures where ION is used and using it for such analysis is misleading [13]. Despite its theoretical advantage, ION was not shown to be of benefit in anterior cervical discectomies in a retrospective analysis of over 140,000 cases [14]. Fehlings et al. [6] performed a meta-analysis of multimodal ION in spinal surgery and found it to be useful.

7 Value of intraoperative neurophysiological monitoring in today’s world

The use of ION is now part of many surgical procedures in multiple surgical fields. It is now utilized in peripheral nervous system procedures, such as including the repair and lesion removal at the brachial plexus and peripheral nerves, the ability to monitor most of the cranial nerves in brain stem surgery and ENT procedures, the prevention of spinal cord and cortical damage during aortic surgery and carotid bifurcation surgery, ability to monitor the cranial nerves, the monitoring of the function of the cauda equina including bladder function and the monitoring for the proper placement of neuromodulation systems. It has also been used to monitor the superior laryngeal nerve in thyroid surgery as well as in the repair of neurodysplasia. In addition to SEPs, MEPs, and BAEPs, methodologies include the recording direct nerve to nerve recordings and the monitoring of nervous system reflex pathways. The combination of newer imaging tools such as functional mapping and tractography with ION has vastly improved the management of lesions located in or very close to eloquent brain areas. The imaging of fiber tracts in the white matter in combination with mapping and monitoring of motor tracts has made surgical interventions possible for many patients that would not have been touched before these modalities were available. A meta-analysis of 90 publications where a combination of stimulation driven mapping and electrophysiological monitoring was used during glioma compared with cases where they were not used in over 8000 patients demonstrated a significant reduction in severe neuro-deficits from 8.2%, with no stimulation driven mapping, down to 3.4%, with mapping, and an increase in percent of radiologically confirmed gross total resection of up to 75% compared with only 58% in the nonmonitored group [15].

8 Conclusion on why we need intraoperative neurophysiological monitoring

ION has demonstrated its ability to reduce neurologic deficits. The combination of mapping and monitoring has not only made the surgeon feel safer, it also makes previously impossible operations possible via its ability to minimize side-effects and enable more difficult and more extensive resections. Intraoperative neurophysiology allows for maximizing of extent of resection in glioma surgeries which in turn contributes to the prolongation of survival for these patients.

9 A personal perspective on the development of intraoperative neurophysiological monitoring

This section does not aim to be a complete and comprehensive overview on the development of intraoperative monitoring covering all authors, all specialties, and all countries involved. However, it allows the development of an idea on how ION slowly developed in Japan, the United States, and Europe more or less in parallel. More comprehensive reviews of this history can be found in references [16,17].
9.1 An early period of evoked potential applications

When the concept of ION was developed in the 1970s, the recording of EPs was a relatively new method and the clinical usefulness was unclear. The first-time cerebral responses had been recorded in response to electrical stimulation of peripheral nerves occurred in 1947 [18], but at that time there was no technology that allowed multiple time locked signals to be averaged, which was eventually developed in the early 1950s. As time progressed the clinical utility of EPs started to evolve with visual EPs being used for the diagnosis of multiple sclerosis [19], BAEP for audiometry, and eventually for cerebellopontine angle (CPA) tumor. SEPs were initially used to evaluate spinal cord injury [20,21]. Early recordings of electrical activity from the human spinal cord were performed by anesthetists Ertekin [22] in Turkey and Shimoji et al. [23] in Japan. Looking at spinal cord physiology to detect injury was also done in man by Shimoji et al. [23], Kurokawa [24], in animals by Deecke and Tator [25] and others. We used epidural spinal and cortical EPs to monitor the extent of damage in acute, subacute, and chronic experimental spinal cord compression in the cat [26,27]. In an early publication on SEPs for diagnostic purposes in neurosurgery, Perot [20] concluded that “the technique of recording the SEP may prove valuable in monitoring the integrity of the spinal cord during operative manipulation.” The concept of SEPs being used for monitoring during surgery had actually been proposed 1 year earlier.

9.2 From diagnostics to intraoperative neurophysiological monitoring

Progressing from the using SEPs as a diagnostic tool in spinal injury, both experimentally and for human trauma, it was not a giant leap to propose the use of SEPs to monitor spinal cord function during surgery. This significant innovation was proposed independently by American neurosurgeons Croft, Brodkey, and Nulsen [28] and Japanese orthopedic surgeons, Tamaki et al. in 1972 [29]. A few years later Tamaki’s group published on the use of evoked spinal cord action potentials during surgery of spinal lesions [30].

The first publication on intracranial monitoring was the use of BAEPs for the detection of hearing loss during acoustic neuroma surgery [31]. One year later, Delgado et al. published a technique that used direct VIIth stimulation and recording responses from the innervated facial muscles to “improve the identification and facilitate the dissection of the facial nerve” [32].

It is remarkable that the early work leading to ION was independently developed in several countries and by very different specialties including anesthetists, orthopedic surgeons, neurosurgeons, otologic surgeons, and neurophysiologists.

The first intraoperative use of spinal cord monitoring was published by Nash et al. in Cleveland [33] and Tamaki et al. in Japan [30,34] who were very much concerned about the incidence of paraplegia occurring during the correction of scoliosis deformities in young children. The first workshop on the “Clinical Application of Spinal Cord Monitoring for Operative Treatment of Spinal Diseases” was organized at Case Western Reserve University. That workshop took place in September 1977 and was cochaired by an orthopedic surgeon, Clyde Nash, and a neurosurgeon, Jerald S. Brodkey [35]. The proceedings from that meeting are depicted in Fig. 1. Institutional sponsors included the American Academy of Orthopedic Surgeons, the National Institutes of Health, and the Scoliosis Research Society. A second meeting organized by Richard Brown (a neurophysiologist who built one of the first dedicated ION systems) and Clyde Nash (an orthopedic surgeon) followed 1979 in St. Louis (Fig. 2).

Soon after a number of ION series followed: Engler et al. on the use of ION during Harrington instrumentation for the treatment of scoliosis [36]; Macon et al. on EP use during spinal surgery [37]; Allen et al. on the use of ION under anesthesia [38]; and Raudzens on ION [39]. The epidural recording technique pioneered by Shimoji et al. [23] was used by British orthopedic surgeons for spinal cord monitoring during scoliosis as early as 1983 [40]. The first book devoted to spinal cord monitoring came from Japan and was based the lectures given during the proceedings of the first International Spinal Cord Monitoring Symposium (Fig. 3). The editors were the physiologist from S. Homma from Chiba, Japan, and the orthopedic surgeon T. Tamaki from Toyama, Japan. Coeditors included K. Shimoji, an anesthesiologist, and T. Kurokawa, an orthopedic surgeon. That book was published in 1984 [41].

At that time monitoring equipment was not commercially available; many of the initial recording apparatus were large and not easy to move and frequently designed with valve (vacuum tube) operated amplifiers. The ability to store the data was poor and even worse was the artifact rejection capabilities. These pioneers deserve a lot of credit for their perseverance.
PROCEEDINGS

CLINICAL APPLICATION OF SPINAL CORD MONITORING FOR OPERATIVE TREATMENT OF SPINAL DISEASES

Case Western Reserve University School of Medicine
Rainbow Babies & Childrens Hospital
Cleveland, Ohio

September 15, 16, 17, 1977

CLYDE L. NASH, JR., M. D., Chairman
JERALD S. BRODKEY, M. D., Co-Chairman

Sponsors:
American Academy of Orthopaedic Surgeons
Board of Trustees, Rainbow Babies & Childrens Hospital
National Institutes of Health
Scoliosis Research Society

FIGURE 1 Title page of the proceedings of the first ever meeting devoted to the clinical application of spinal cord monitoring in 1977 in Cleveland, OH, United States. (Used with permission from Case Western Reserve University School of Medicine).
The practitioners involved in the early days of ION came from a diverse set of specialties including neurophysiologists, anesthetists, orthopedic surgeons, neurosurgeons, and to a lesser extent neurologist. Frequently the driving force was a combination of a neurophysiologist (MD or PhD) with a clinician. Over time as more reliable and sophisticated monitoring equipment became commercially available the majority of ION is performed by

The practitioners involved in the early days of ION came from a diverse set of specialties including neurophysiologists, anesthetists, orthopedic surgeons, neurosurgeons, and to a lesser extent neurologist. Frequently the driving force was a combination of a neurophysiologist (MD or PhD) with a clinician. Over time as more reliable and sophisticated monitoring equipment became commercially available the majority of ION is performed by
technicians who are now supervised by physicians, which is the standard practice in many countries. In the United States, commercial ION companies were created to offer ION to hospitals and surgeons who may not have the resources or number of procedures justifying an in-house program.

9.3 Further clinical development

Once ION established a presence in the operating room, and the first publications demonstrated its benefit, the next step was to establish technical standards of for the practice of ION. In addition, a standard criterion for determining abnormality and rules for intervention based on these criteria were necessary. This included a combination of imaging, data storage, definitions of waveform abnormalities, understanding the normal variability of EPs, and at what point is intervention necessary as well as defining best practices for the practice of ION.

Equipment standards were also needed. These included the best electrode for a particular modality or stimulation versus recording, what are the best electrode position to optimize the recordings, where to stimulate and what are the best stimulation parameters, how best to set-up the amplifier and filters to get the best recordings in the fastest time, whether to use bipolar or referential recording montages, and the effects of anesthetic agents and other physiologic parameters. It was soon discovered, for example, that the stimulation rate should not be a multiple of the line frequency (50 or 60 Hz). There was no formalized decision-making process, but over time studies were published and discussions at meetings started to formalize the practice of ION, although it is important to note that it took a lot of time for societal formal publications to define standards [42–44].

Parallel to that a number of new phenomena were observed. It was discovered that the position of the body, loss of CSF, level of blood pressure, and other technical factors could influence the recordings. One way to define a “significant” change was, for example, recording a BAEP in anesthetized patients who did not have a cranial pathology or were not being operated on for a cranial intervention, and compare these recordings to those from patients who did have an auditory pathway pathology such as during a CPA tumor. Another method was to compare the response between the side ipsilateral to the tumor and the side contralateral to the tumor. One example of how comparing the normal and abnormal side was beneficial for patients being operated on for procedures that were nonbrain stem related it was discovered latencies changes of waves I and V were more likely. Particularly was the fact that the wave V latency increased more on the ipsilateral side to the tumor.

Of particular interest was the definition of so-called warning criteria, which are based on decrements of amplitude loss and/or increases in latency. Several proposals were made regarding amplitude, for example, a loss of 40% [45], of more than 50%, or of over 60%, sometimes including the number of repeatable responses and the time course of the change (summarized in Ref. [16]). It also became clear that all responses needed to referenced to one that was obtained after induction of anesthesia but before the beginning of “manipulation.” In this way the influence of the anesthetic drugs on the interpretation of the defined “alarm” criteria was reduced. It is also evident that warning criteria vary for different monitoring modalities.

Other waveform parameters and stimulation paradigms such as interpeak latencies, effects of paired pulse or train stimuli, area under the curve, conduction velocity, and spectral analysis were investigated in relation to their ability to predict injury.

Most of these methods were too cumbersome and unprecise and were given up. It all came down to a very simple rule. The potential was unchanged, a persistent deficit was unlikely, or the potential was lost permanently, a deficit was likely or pretty sure. An amplitude reduction of over 50% for SEPs remains a concern.

On the technical side a number of improvements happened. Commercial equipment was now available, dedicated for the purpose of intraoperative monitoring, including automatic artifact suppression. The ideal filter settings were determined and the ideal electrode positions on the head were defined. Recorded EPs could now easily be stored digitally and automated peak detection and amplitude measurements could be defined. Digitalization of the recording and amplifier design led to more user-friendly monitoring equipment. It was now easy to obtain recordings from multiple channels simultaneously and store hundreds of responses for later analysis.

9.4 The problem of motor-evoked potentials monitoring

For many years MEPs were not available for recording under general anesthesia. It became clear that SEP monitoring could not reliably predict whether motor deficits were likely to occur or not. The classification of motor deficits as false-negative in cases where only somatosensory EPs were monitored is a misnomer. In fact, a false-negative should only be defined in relation to the modality monitored, for example, if motor tract