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We dedicate this textbook to Dr. Julius H. Comroe, Jr., who was our mentor during the formative years of our 

professional development. Dr. Comroe was one of the truly great academicians of his generation. He was an 

investigator of exceptional merit, an educator whose influence was worldwide, and a medical statesman of 

exemplary integrity and vision. In dedicating this book, we acknowledge especially Dr. Comroe’s scholarly 

contributions and his commitment to the importance of basic science in the solution of clinical problems.
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Preface to the Sixth Edition

In this Preface to the Sixth Edition of  Murray & Nadel’s 
Textbook of  Respiratory Medicine, the Editors are pleased to 
highlight the new features that enhance the readability and 
educational value of  the book. Whereas advances in both 
the Fourth and Fifth Editions increasingly incorporated 
online resources, with the Sixth Edition, the textbook has 
become truly digital.

The Expert Consult eBook version of  the Sixth Edition 
now provides easier navigation, more thorough and precise 
searching and retrieval capabilities, and extensive resource 
material. Via the eBook, readers will have access to nearly 
200 videos and audio files and more than 600 new eFig-
ures; there are also extensive cross references to other 
figures and videos throughout the book. Whereas Key 
Readings are listed for each chapter in both hardcover and 
electronic versions, the eBook contains the entire, extensive 
bibliography where the reader can access each reference by 
clicking the in-text citation, thereby opening the abstract 
and accessing direct links to PubMed. The eBook contains 
new and revised multiple choice questions from each 
chapter as rich sources of  educational challenge and, using 
the eBook, readers will be able to take notes and highlight 
important content for later reference. Importantly, the 
Expert Consult eBook will feature updates, making it a 
living textbook.

New chapters have been created, former chapters divided, 
and still others consolidated; in all, the number of  chapters 
has increased from 95 in the Fifth Edition to 106 in the 
Sixth, as a reflection of  the growth in knowledge of  scien-
tific and clinical aspects of  respiratory health and disease. 
For example, the chapters on asthma and COPD have both 
been split: each of  these major pulmonary diseases now  
has one chapter encompassing its molecular phenotypes 
and pathogenesis and another chapter outlining diagnosis 
and management. In addition, a chapter on the genetics of  
asthma and COPD has been added. The section on sleep has 
been expanded from one to four chapters and sections on 
pleural disease and fungal disease have also been expanded. 
New chapters have been added on positron emission tomog-
raphy, therapeutic bronchoscopy, interventional radiology, 
bronchiolitis, pulmonary hypertension due to lung disease, 
non-invasive ventilation, and extra-corporeal membrane 
oxygenation.

Two new positions have been created: an Editor-in-Chief, 
who has orchestrated this complex project, and an Editor of  
Thoracic Imaging, who has edited all clinical images and 
added hundreds more to the publication. Of  the total of  227 
authors, 44% are first-time authors to Murray & Nadel and 
more than 25% hold academic positions outside the United 
States.

As the partnership between the scientific and clinical 
applications of  respiration has grown and evolved since 
1988—when the Textbook of  Respiratory Medicine was ini-
tially published—two guiding axioms have reinforced every 
edition: first, our staunch belief  in the benefit of  integrating 
basic science with the practice of  respiratory medicine and, 
second, the value of  having an extensive and inclusive bib-
liography of  classic works and current relevant articles.

Technical advances in publishing have led to extraordi-
nary improvements in how information is gathered, pack-
aged, and displayed for optimum educational benefit. We 
want to congratulate our publisher, Elsevier, for ensuring 
that these opportunities were fully realized; moreover, we 
wish to compliment the entire, talented publishing staff  that 
contributed to this Sixth Edition. Particular thanks go to 
Jennifer Shreiner, Senior Content Development Editor, who 
shepherded the project from beginning to end; to Helene 
Caprari, Content Strategist, for guiding the book through its 
various stages of  production; and to Mary Pohlman, Senior 
Project Manager, for her proofing and copyediting prowess. 
Finally, we acclaim the superb work of  all the authors and 
various contributors for bringing this textbook to life, in 
both hard copy and in its newest digital form.

John F. Murray, MD

Jay A. Nadel, MD

V. Courtney Broaddus, MD

Robert J. Mason, MD

Joel D. Ernst, MD

Talmadge E. King, Jr., MD

Stephen C. Lazarus, MD

Arthur S. Slutsky, MD

Michael B. Gotway, MD
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Preface to the First Edition

The rapid growth of  knowledge of  basic scientific principles 
and their application to respiratory medicine has resulted 
in a proliferation of  monographs and texts dealing with 
selected aspects of  pulmonary science and clinical medi-
cine, but no single work has provided a comprehensive 
description of  all that is currently known. The Textbook 
of  Respiratory Medicine is an attempt to provide a well-
balanced, authoritative, and fully documented book that 
integrates scientific principles with the practice of  respira-
tory medicine. The text is sufficiently detailed and refer-
enced to serve as the definitive source for interested students, 
house officers, and practitioners, both pulmonary special-
ists and generalists. It is written by leading experts, to guar-
antee that the material is authoritative and contemporary.

To deal with such an enormous amount of  material, we 
have divided the book into three major sections. This orga-
nization should help guide interested readers from the intri-
cacies of  basic science to their application at the bedside. 
We begin in Part I with Scientific Principles of  Respiratory 
Medicine. As implied, this is where the reader will find 
detailed information about the anatomy and development 
of  the respiratory tract, respiratory physiology, pharmacol-
ogy and pathology, and defense mechanisms and immunol-
ogy. A strong foundation in these basic sciences will make 
possible a rational and scientific approach to the more spe-
cialized clinical material included in the subsequent sec-
tions. Part II, Manifestations and Diagnosis of  Respiratory 
Disease, contains four chapters on the cardinal signs and 
symptoms of  respiratory disorders and ten chapters on 
diagnostic evaluation, ranging from the history and physi-
cal examination to the newest and most sophisticated 
imaging, applied physiologic, and invasive techniques. Dis-
crete clinical disorders are included in Part III, Clinical 
Respiratory Medicine. There are sections on Infectious  
Diseases, Obstructive Diseases, Neoplasms, Disorders of  the 
Pulmonary Circulation, Infiltrative and Interstitial Dis-
eases, Environmental and Occupational Disorders, Disor-
ders of  the Pleura, Disorders of  the Mediastinum, Disorders 
in the Control of  Breathing, Respiratory Manifestations of  
Extrapulmonary Disorders, and Respiratory Failure. All but 
one of  the sections dealing with a generic clinical problem 
begin with a chapter entitled “General Principles and Diag-

nostic Approach.” New challenges to adult respiratory 
medicine have sprung up, and these are reflected in chap-
ters on subjects such as cystic fibrosis (previously a  
disease only of  childhood!), environmental and occupa-
tional diseases, disorders of  breathing, and respiratory 
problems associated with unusual atmospheres (high alti-
tude, diving). The book ends with a novel and important 
section on Prevention and Control.

Putting together a Textbook of  this scope and magnitude 
is no easy task and involves making certain decisions that 
all readers may not agree with. For example, while trying 
to keep the length of  the book as manageable as possible, 
we decided to permit some overlap of  content. Thus readers 
will find bronchodilators discussed in the chapter on airway 
pharmacology and again in the pertinent chapters on 
obstructive airway diseases. We have also welcomed differ-
ences of  opinion among authors, provided the issues were 
clearly stated and the reasons for the author’s position 
documented.

Our struggles were not as arduous as they might have 
been because we have had considerable help from many 
sources. First of  all was the help from the 95 authors, who 
worked long and hard on their various contributions. The 
two editors worked in San Francisco, where they had the 
benefit of  expert secretarial support from Ms. Dorothy Ladd 
and Mrs. Beth Cost. Special acknowledgment goes to Ms. 
Aja Lipavsky who, as editorial assistant, handled corre-
spondence, proofing, permissions, and innumerable other 
details, and prepared the index. At W.B. Saunders in Phila-
delphia, the book was the brainchild of  then-president John 
Hanley and was published with the guidance of  J. Dereck 
Jeffers, William Lamsback, and the new president Lewis 
Reines. Production was supervised by Evelyn Weiman.

The long gestation of  this book is over, parturition is near, 
and it will soon begin a life of  its own. Like all expectant 
parents, we are concerned about how our offspring will 
make its way in the real world. We hope people will like it 
and find it useful.

John F. Murray, MD

Jay A. Nadel, MD
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Videos

	 1	 Anatomy	of	the	Lungs

Video 1-1. Cardiac pulsations across the lung

Video 1-2. Lung hyperinflation caused by increasing 
positive end-expiratory pressure

Video 1-3. Lung inflation determined by altering 
respiratory rate and peak inspiratory pressure

Video 1-4. Re-expansion of collapsed lung parenchyma

Video 1-5. Lung hyperinflation increases filling of the 
caudal vena cava

	 11	 Aerosol	Deposition	and	Clearance

Video 11-1. Infant withdrawal from facemask

Video 11-2. Pacification of an unhappy patient

Video 11-3. Mucociliary clearance measured with a gamma 
camera

	 15	 Injury	and	Repair

Video 15-1. Injury and repair of the alveolar epithelium

	 16	 History	and	Physical	Examination

Audio 16-1. Normal lung sounds

Audio 16-2. Bronchial breath sounds

Audio 16-3. Tracheal breath sounds

Audio 16-4. Fine crackles

Audio 16-5. Coarse crackles

Audio 16-6A. Wheezing

Audio 16-6B. High-pitched wheeze

Audio 16-7. Rhonchi

Audio 16-8. Normal voice sounds followed by egophony

Audio 16-9. Normal voice sounds followed by 
bronchophony

Audio 16-10. Normal whispered sounds followed by 
whispered pectoriloquy

Audio 16-11. Pleural friction rub

Audio 16-12. Inspiratory and expiratory stridor

Audio 16-13. Chest hair rubbing against the diaphragm of 
the stethoscope

Audio 16-14. Subcutaneous emphysema

Audio 16-15. Bone crepitus

	 18	 Thoracic	Radiology:	Noninvasive	Diagnostic	
Imaging

Video 18-1. Fluoroscopic sniff test showing unilateral right 
diaphragmatic paralysis

Video 18-2. Digital subtraction catheter pulmonary 
angiography

Video 18-3. Normal CT angiography utilizing ECG gating 
(axial)

Video 18-4. Normal CT angiography (coronal reformat)

Video 18-5. Reduced-dose CT pulmonary angiography 
(CTPA)

Video 18-6. Volumetric thin section imaging of a solitary 
mass detected at chest radiography

Video 18-7A. CT features of benign causes of pulmonary 
nodules: rounded atelectasis (lung windows)

Video 18-7B. CT features of benign causes of pulmonary 
nodules: rounded atelectasis (soft tissue 
windows)

Video 18-8. Hereditary hemorrhagic telangiectasia with 
arteriovenous malformations

Video 18-9. Randomly distributed small pulmonary 
nodules

Video 18-10. Perilymphatic nodules in sarcoidosis

Video 18-11A. Intrathoracic large airway neoplasia: axial CT

Video 18-11B. Intrathoracic large airway neoplasia: virtual 
bronchoscopy

Video 18-12. Air trapping on dynamic expiratory CT

Video 18-13. Saddle pulmonary embolism with right 
ventricular strain

Video 18-14. Coronal magnetic resonance angiogram of 
pulmonary embolism

	 20	 Ultrasonography

Video 20-1. Lung sliding sign of normal lung

Video 20-2. Pulmonary edema with multiple B-lines seen 
diffusely

Video 20-3. Pneumothorax with absence of key signs

Video 20-4. Normal thickening of the diaphragm during 
inspiration

Video 20-5. Longitudinal vascular scan with echogenic 
thrombus seen in the common femoral vein 
deep to the common femoral artery

Video 20-6. Compression ultrasonography with no deep 
venous thrombosis

Video 20-7. Hypoechoic venous thrombosis within a 
noncompressible vein

Video 20-8. Pericardial effusion

Video 20-9. Lung flapping sign of pleural effusions

Video 20-10. Septations in a parapneumonic effusion

Video 20-11. Swirling debris in a malignant pleural effusion

Video 20-12. Heterogeneously echogenic pleural effusion 
with positive hematocrit sign

Video 20-13. Diaphragmatic thickening and nodules in a 
malignant pleural effusion

Video 20-14. Pleural catheter as hyperechoic linear structure
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	 22	 Diagnostic	Bronchoscopy

Video 22-1. A normal bronchoscopy

Video 22-2. Transbronchial needle aspiration of subcarinal 
lymph nodes via flexible bronchoscopy

Video 22-3. Transbronchial needle aspiration via 
endobronchial ultrasound

	 23	 Therapeutic	Bronchoscopy

Video 23-1. Intubation using the rigid bronchoscope

Video 23-2. Electrocautery with cautery snare

Video 23-3. Argon plasma coagulation therapy of 
endobronchial papillomatosis

Video 23-4. Neodymium:Yttrium-aluminum-garnet 
(Nd:YAG) laser incision of subglottic stenosis

Video 23-5. Placement of a self-expanding stent in the 
right main-stem bronchus

Video 23-6. Microdébrider used to remove granulation 
tissue at the tracheostomy stoma

Video 23-7. Cryotherapy of right upper lobe squamous cell 
carcinoma

	 24	 Thoracoscopy

Video 24-1. Thoracoscopy

Video 24-2. Reexpansion of collapsed lung

Video 24-3. Rigid thoracoscopy with 7-mm thoracoscope

Video 24-4. Biopsy of parietal pleural lesion

Video 24-5. Talc insufflation

Video 24-6. Thoracoscopic inspection of a mesothelioma

Video 24-7. Thoracoscopic biopsy using a rigid optical 
biopsy forceps via a single-port technique

Video 24-8. Pleuroscopy in an adult with former asbestos 
exposure

Video 24-9. Yellow nail syndrome

Video 24-10. Empyema with septations

Video 24-11. Fluorescein inhalation demonstrating apical 
blebs and porosity

Video 24-12. Talc poudrage

	 30	 Cough

Audio 30-1. Voiced or glottal phase of cough

Audio 30-2. Successive coughs

Audio 30-3. Whooping cough: child

Audio 30-4. Whooping cough: adult

	 33	 Bacterial	Pneumonia	and	Lung	Abscess

Video 33-1. S. intermedius pneumonia and empyema

Video 33-2. Non-infectious “non-responding” pneumonia: 
invasive mucinous adenocarcinoma

	 44	 COPD:	Clinical	Diagnosis	and	Management

Video 44-1. Centriacinar emphysema with predominant 
apical lucency

Video 44-2. Panacinar emphysema with predominant 
basilar lucency

	 54	 Rare	Primary	Lung	Tumors

Video 54-1. Pulmonary artery sarcoma: imaging 
appearances

	 56	 Benign	Lung	Tumors

Video 56-1A. Squamous papilloma of the trachea: Axial CT

Video 56-1B. Squamous papilloma of the trachea: Coronal 
CT

Video 56-2. Solitary fibrous tumor of the pleura

	 57	 Pulmonary	Thromboembolism

Video 57-1. McConnell’s Sign, an echocardiographic sign 
seen with acute pulmonary embolism (PE), 
seen in comparison with a normal 
echocardiogram

Video 57-2. Echocardiogram showing thromboemboli in 
right-sided chambers of the heart

Video 57-3. CT pulmonary angiogram showing bilateral 
pulmonary emboli

	 58	 Pulmonary	Hypertension

Video 58-1. Echocardiogram in pulmonary hypertension

	 59	 Pulmonary	Hypertension	due	to	Lung	Disease

Video 59-1A. Short-axis echocardiogram of a normal heart

Video 59-1B. Short-axis echocardiogram of a heart in a 
patient with pulmonary hypertension

Video 59-2A. Apical four-chamber echocardiogram of a 
normal heart

Video 59-2B. Apical four-chamber echocardiogram of a 
heart in a patient with pulmonary 
hypertension

	 61	 Pulmonary	Vascular	Abnormalities

Video 61-1. Apical four-chamber view of an agitated saline 
contrast echocardiogram (Bubble Study)

Video 61-2. Systemic-to-pulmonary vascular 
communication

Video 61-3. Intralobar sequestration: anomalous systemic 
arterial supply

	 62	 Pulmonary	Edema

Video 62-1. Radiographic CT images showing interstitial 
pulmonary edema

Video 62-2A. Pulmonary Edema: CT at onset of symptoms

Video 62-2B. Pulmonary Edema: CT at 2 weeks post-onset of 
symptoms

Video 62-2C. Pulmonary Edema: CT at 45 days 
post-presentation

	 63	 Idiopathic	Interstitial	Pneumonias

Video 63-1. CT of combined pulmonary fibrosis and 
emphysema

Video 63-2. CT showing peripheral consolidated opacities
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	 64	 Hypersensitivity	Pneumonitis

Video 64-1A. Centrilobular nodules in a patient with 
hypersensitivity pneumonitis

Video 64-1B. Air trapping and small airway obstruction in a 
patient with hypersensitivity pneumonitis

	 67	 Alveolar	Hemorrhage	and	Rare	Infiltrative	
Diseases

Video 67-1. Pulmonary alveolar microlithiasis

	 68	 Eosinophilic	Lung	Diseases

Video 68-1. Idiopathic chronic eosinophilic pneumonia: 
chest CT findings

	 73	 Pneumoconioses

Video 73-1. CT of complicated silicosis in soft tissue 
windows

Video 73-2. CT of complicated silicosis in lung windows

Video 73-3. Chest CT of silicosis and progressive massive 
fibrosis

Video 73-4. Axial chest CT in a patient with asbestos 
exposure

Video 73-5. Chest CT in a patient with chronic beryllium 
disease

Video 73-6. Hard-metal lung disease on chest CT

	 76	 Trauma	and	Blast	Injuries

Video 76-1. Flail chest: paradoxical chest wall movement

Video 76-2. Flail chest: post-rib fixation

Video 76-3. Blunt thoracic traumatic injury: 
tracheobronchial injury

	 77	 High	Altitude

Video 77-1. Periodic breathing at high altitude

Video 77-2. Ataxia in high altitude cerebral edema

	 79	 Pleural	Effusion

Video 79-1. Pleural thickening with key features of 
malignancy

Video 79-2. Pulmonary edema with interlobular septal 
thickening and bilateral effusions

Video 79-3. Pericarditis with pericardial effusion and 
bilateral pleural effusions

Video 79-4A. Pulmonary embolism, infarct and effusion 
(before resolution)

Video 79-4B. Pulmonary embolism, infarct and effusions 
(after resolution)

Video 79-5. Subdiaphragmatic abscess with associated 
pleural effusion

	 80	 Pleural	Infections

Video 80-1. Empyema secondary to Streptococcus 
intermedius

Video 80-2. Thoracoscopic surgical view of empyema

	 81	 Pneumothorax,	Chylothorax,	Hemothorax,	and	
Fibrothorax

Video 81-1. Chylothorax seen on pleuroscopy

Video 81-2. Chest CT of chylothorax

Video 81-3. Fibrothorax seen on pleuroscopy

	 82	 Pleural	Tumors

Video 82-1. Pleural tumor without effusion

Video 82-2. Volume loss ipsilateral to pleural effusion 
caused by bronchial obstruction

Video 82-3. Extrapleural clues for pleural malignancy

Video 82-4. Mesothelioma in the setting of calcified 
pleural plaques (axial CT)

Video 82-5. Mesothelioma with invasion into chest wall 
and diaphragm

	 83	 Mediastinal	Tumors	and	Cysts

Video 83-1. Mediastinal mass in a patient with 
bronchogenic carcinoma and superior vena 
cava syndrome

Video 83-2. Mediastinal mass in a patient with lymphoma 
and superior vena cava syndrome

Video 83-3. Thymoma in a patient with myasthenia gravis

Video 83-4. An anterior mediastinal teratoma

Video 83-5. Thymolipoma

Video 83-6. Omental fat hernia due to foramen of 
Morgagni hernia

Video 83-7A. Magnetic resonance images: “Black Blood” 
appearance

Video 83-7B. Magnetic resonance motion images: “White 
Blood” appearance

Video 83-8. Utility of magnetic resonance for determining 
mediastinal involvement in bronchogenic 
malignancy

Video 83-9. Seminoma

Video 83-10. Embryonal cell carcinoma

Video 83-11A. Schwannoma (axial CT)

Video 83-11B. Schwannoma (coronal enhanced CT)

Video 83-12. Extramedullary hematopoiesis containing fat

Video 83-13. Mediastinal mass caused by aortic aneurysm

Video 83-14. Mediastinal mass caused by enlargement of 
the azygos vein

Video 83-15. Foramen of Morgagni hernia

	 84	 Pneumomediastinum	and	Mediastinitis

Video 84-1. Pneumomediastinum resulting from left 
mainstem bronchial fracture following motor 
vehicle collision

Video 84-2. Venous perforation of a peripherally inserted 
venous catheter with entry into the 
mediastinum
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	 91	 Pulmonary	Complications	of	Stem	Cell	and	Solid	
Organ	Transplantation

Video 91-1. Diffuse alveolar hemorrhage following stem 
cell transplantation

Video 91-2. Peri-engraftment syndrome following stem 
cell transplantation

	 94	 Pulmonary	Complications	of	Hematologic	
Diseases

Video 94-1. Transthoracic echocardiogram of severe 
pulmonary hypertension associated with 
sickle cell disease

Video 94-2. Cardiac magnetic resonance image of severe 
pulmonary hypertension associated with 
sickle cell disease

	 95	 Pulmonary	Complications	of	Endocrine	Diseases

Video 95-1. Bulky goiter causing tracheal deviation

Video 95-2. Micronodules of metastatic thyroid cancer

	 97	 The	Respiratory	System	and	Neuromuscular	
Diseases

Video 97-1. Diaphragmatic motion by ultrasound

Video 97-2. Use of the mechanical insufflator-exsufflator

	 98	 The	Respiratory	System	and	Chest	Wall	Diseases

Video 98-1. Pectus excavatum with right ventricular 
compression

Video 98-2. Posterolateral flail chest

100	 Acute	Hypoxemic	Respiratory	Failure	and	ARDS

Video 100-1. Demonstration of atelectasis from inadequate 
PEEP

106	 Lung	Transplantation

Video 106-1. Dynamic expiratory imaging in a patient with 
a left lung transplant for COPD

Video 106-2. Inspiratory films of a patient with bilateral 
lung transplantation

Video 106-3. Dynamic expiratory imaging in a patient with 
a bilateral lung transplant
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SECTION  A

ANATOMY AND DEVELOPMENT OF 
THE RESPIRATORY TRACT

1 ANATOMY OF THE LUNGS
KURT H. ALBERTINE, PhD

INTRODUCTION
GROSS AND SUBGROSS 

ORGANIZATION
AIRWAYS
BRONCHIAL CIRCULATION

PULMONARY CIRCULATION
TERMINAL RESPIRATORY UNITS
LYMPHATICS
INNERVATION

THE PLEURAL SPACE AND PLEURAS
COMPARISON OF THE LUNG OF MICE 

AND HUMANS

INTRODUCTION

The lung has two essential, interdependent functions. One 
function is ventilation-perfusion matching to deliver oxygen 
to the body and to remove carbon dioxide that is produced 
by the body (Fig. 1-1). The second function is host defense 
against the onslaught of  airborne pathogens, chemicals, 
and particulates. These essential functions are emphasized 
through the gross, subgross, histologic, and ultrastructural 
determinants of  respiratory gas exchange in the normal 
human lung. Secondary functions of  the lung also are 
important, such as surfactant synthesis, secretion, and recy-
cling; mucociliary clearance; neuroendocrine signaling; 
and synthesis and secretion of  a myriad of  molecules by its 
epithelial and endothelial cells. The diversity of  secondary 
functions emphasizes the importance of  the lung in homeo-
stasis. The chapter finishes with comparison of  the lung of  
mice and humans, an important subject given the wide-
spread use of  murine models in lung research. Videos 1-1 
to 1-5 provide views of  lung movements related to changes 
in tidal volume, airway pressures, and respiratory rate.

GROSS AND SUBGROSS 
ORGANIZATION

The position of  the lungs in the chest and in relationship  
to the heart is shown in Fig. 1-2. Figure 1-2A shows a 

midfrontal section through the thorax of  a frozen human 
cadaver. Figure 1-2B shows a posterior-anterior chest radio-
graph of  a normal human at functional residual capacity 
(FRC). The two illustrations represent the extremes of  the 
approaches to lung anatomy. The cadaver lung (see Fig. 
1-2A) shows the gross anatomic arrangements and rela-
tionships. The main distortion is that the lungs are at low 
volume. The vertical height of  the lungs is only approxi-
mately 18 cm, which is well below that at FRC (see Fig. 
1-2B). The diaphragm is quite elevated in Figure 1-2A, and 
is approximately 5 cm higher than its end-expiratory posi-
tion in life. Another distortion is the abnormally wide 
pleural space; however, this fixation shrinkage artifact 
serves as a useful reminder that the lung is not normally 
attached to the chest wall. In life the separation between the 
parietal and visceral pleuras is only several micrometers.1,2 
The chest radiograph (see Fig. 1-2B) shows that the vertical 
height of  the lung at FRC is approximately 24 cm, with the 
level of  the bifurcation of  the pulmonary artery approxi-
mately halfway up the lungs. The diaphragm is lower and 
flatter than in the cadaver.

In life the human lungs weigh 900 to 1000 g, of  which 
nearly 40% to 50% is blood.3,4 At end-expiration, the gas 
volume is approximately 2.5 L whereas, at maximal inspi-
ration, it may be 6 L. Thus overall lung density varies from 
0.30 g/mL at FRC to 0.14 g/mL at total lung capacity. But 
the density of  the lung is not distributed uniformly, being 
approximately 1 g/mL near the hilum and 0.1 g/mL periph-
erally. If  one likens each lung to a half  cylinder, more than 
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sema,12 air enters the loose-binding connective tissue and 
dissects along the peribronchovascular sheaths to the hilum 
and along the lobular septa to the visceral pleura. Intersti-
tial pulmonary edema liquid enters and moves along the 
same interstitial pathways (Fig. 1-5).13

50% of  all the lung’s alveoli are located in the outer 30% 
of  the lung radius (hilum to chest wall). This is why the 
peripheral portion of  the lung appears relatively empty in 
the chest radiograph (see Fig. 1-2). Variability in density 
also exists from top to bottom. In Figure 1-2 the blood 
vessels are more distended in the lower lung fields. The 
increasing distention of  vessels from apex to base also illus-
trates the increase in vascular distending pressures at the 
rate of  1 cm H2O/cm height down the lung.

The disposition of  the various tissues that constitute  
the lung is summarized in Table 1-1. An amazing point is 
how little tissue is involved in the architecture of  the alveo-
lar walls.5,6 But this is as it should be because the major 
physical problem of  gas exchange is the slowness of  oxygen 
diffusion through water.7,8 Thus the alveolar walls must 
be extremely thin. In fact, the thickness of  the red blood  
cell forms a substantial portion of  the air-blood diffusion 
pathway. Advantage was taken of  this fact to separate the 
carbon monoxide diffusing capacity measurement into two 
components: the capillary blood volume and the membrane 
diffusing capacity.9 (For a discussion of  diffusing capacity, 
see Chapters 4 and 25.)

The lung has two well-defined interstitial connective 
tissue compartments arranged in series, as described by 
Hayek10 (Fig. 1-3). These are the parenchymal (alveolar 
wall) interstitium and the loose-binding (extra-alveolar) 
connective tissue (peribronchovascular sheaths, interlobu-
lar septa, and visceral pleura). The connective tissue fibrils 
(collagen, elastin, and reticulin) form a three-dimensional 
basket-like structure around the alveoli and airways (Fig. 
1-4).11 This basket-like arrangement allows the lung to 
expand in all directions without developing excessive tissue 
recoil. Because the connective tissue fibrils in the parenchy-
mal interstitium are extensions of  the coarser fibers in the 
loose-binding connective tissue, stresses imposed at the 
alveolar wall level during lung inflation are transmitted not 
only to adjacent alveoli, which abut each other, but also to 
surrounding alveolar ducts and bronchioles, and then to 
the loose-binding connective tissue supporting the whole 
lobule, and ultimately to the visceral pleural surface (see 
Fig. 1-3). These relations become more apparent in certain 
pathologic conditions. For example, in interstitial emphy-

Figure 1-1 Frozen block of lung tissue. Air is brought into the lung via 
the bronchus (Br) outside of which is a plate of cartilage (C). Pulmonary 
arterial (PA) blood is dark purple because it is poorly oxygenated. Gas 
exchange across the lung’s parenchyma (P) results in oxygenated pulmo-
nary venous (PV) blood, which is crimson. Also present in the peribroncho-
vascular connective tissue are bronchial arteries (arrows) and lymphatics 
(L). (Frozen sheep lung, unstained.) 
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Figure 1-2 Comparison views of lung position in the chest and rela-
tionship to the heart. A, Midfrontal section through the thorax of a frozen 
cadaver of a 35-year-old human. The cadaver was prepared by routine 
embalming procedures, stored horizontally for 3 months in 30% alcohol, 
and frozen in the horizontal position for 1 week at −20° C. Frontal sections 
were cut with a band saw. Because the cadaver was preserved in the hori-
zontal position, the weight of the abdominal organs compressed the con-
tents of the thoracic cavity. The domes of the diaphragm (arrows) are 
elevated approximately 5 cm relative to their end-expiratory position in 
life. Pleural space (PS) width is artifactually enlarged; normally, in life, it is 
several micrometers in width. The trachea (T) is flanked on its left by the 
aortic arch and on its right by the azygos vein. The left pulmonary artery 
lies on the superior aspect of the left main-stem bronchus. Pulmonary 
veins from the right lung enter the left atrium (LA), which is located 
approximately 7 cm above the lung’s base. These structures at the root of 
the lungs caused the esophagus to be cut twice as it follows a curved path 
behind them to reach the stomach. B, Chest radiograph of a normal 
human adult taken in the upright position at functional residual capacity. 
The lung height (cm) was measured from the costodiaphragmatic angle 
to the tubercle of the first rib. The main pulmonary artery (PA) and left 
atrium (LA) are outlined. The vascular structures, especially the pulmonary 
veins, are more easily seen near the bottom of the lung. This is partly 
because vascular distending pressures are greater near the bottom. The 
density of the lung is also graded, being higher at the bottom than the top 
and higher near the hilum than peripherally. (A, Reprinted with permission 
from Koritké JG, Sick H: Atlas of sectional human anatomy. Vol 1: Head, neck, 
thorax. Baltimore, 1988, Urban and Schwarzenberg, FT3a, p 83.)
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The bulk of  the interstitium is occupied by a matrix of  
proteoglycans (Fig. 1-6).14,15 Proteoglycans constitute a 
complex group of  gigantic polysaccharide molecules (≈30 
different core proteins, with great diversity of  glycosamino-
glycan side chains) whose entanglements impart a gel-like 
structure to the interstitium. That structural role, although 
essential, is not the sole role of  these important molecules. 
A growing view is emerging of  the lung’s extracellular 
matrix components as regulators of  lung physiology, help-
ing in determining epithelial cell phenotype; binding of  and 
subsequent signaling by cytokines, chemokines, and growth 
factors; and mediating cell proliferation, migration, differ-
entiation, and apoptosis.16-23 In disease states, degradation 
products of  extracellular matrix components may activate 
the Toll-like receptor pathways (see later discussion); thus 
the degradation products may serve as endogenous 

Figure 1-3 General plan depicting the interstitial connective tissue 
compartments of the lung. All of the support structures (airways, blood 
vessels, interlobular septa, visceral pleura) are subsumed under the loose-
binding connective tissue. The alveolar walls’ interstitium comprises the 
parenchymal interstitium. This organizational plan of the lung follows the 
general organization of all organs. (Reproduced with permission from Hayek 
H: The human lung, New York, Hafner, 1960, pp 298–314.)

Figure 1-4 A drawing of the connective tissue support of the normal 
human adult lung lobule demonstrates the weave of fibers composing the 
“elastic continuum.” AD, alveolar duct; ALV, alveolus; IS, interstitial space; 
PA, pulmonary artery; PV, pulmonary vein; RB, respiratory bronchiole; TB, 
terminal bronchiole. (Reprinted with permission from Wright RR: Elastic tissue 
of normal and emphysematous lungs. Am J Pathol 39:355–367, 1961.)
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Figure 1-5 Interstitial pulmonary edema demonstrating the loose-binding 
(peribronchovascular) connective tissue spaces (CTS) that surround the 
bronchi (Br) and pulmonary arteries (PA). Interstitial edema also expanded 
the interlobular septa (ILS) that are contiguous with the connective tissue 
of the visceral pleura (VP). (Frozen sheep lung, unstained.) 
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Figure 1-6 The interstitium. The connective tissue compartment of the 
lung contains interstitial cells (IC), fibrils of collagen (COL), and bundles of 
elastin (EL). The bulk of the interstitium, however, is occupied by matrix 
constituents (*) such as glycosaminoglycans. (Human lung surgical speci-
men, transmission electron microscopy.) 
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sentinels of  tissue damage and initiators of  innate immune 
responses.18,22-24 Within this gel-like interstitium reside 
several varieties of  interstitial cells (contractile and noncon-
tractile interstitial cells,25,26 mast cells, plasma cells, and 
occasional leukocytes). The remainder of  the interstitium is 

Table 1-1 Components of Normal Human Lung

Component
Volume or 
Mass (mL)

Thickness 
(µm)

Reference 
No.

Gas 2400 8

Tissue 900 3, 4
 Blood  400 4
 Lung  500 8
  Support structures   225 5
  Alveolar walls   275 5, 6
   Epithelium    60 0.18 5, 6
   Endothelium    50 0.10 5, 6
   Interstitium    110 0.22 5, 6
   Alveolar macrophages    55 6
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The anatomic dead space, as measured by the single-
breath nitrogen dilution technique, is approximately 30% 
of  each tidal volume. Anatomically this dead space is 
accounted for principally by the volume of  the extrapul-
monary (upper) airway, including the nasopharynx and 
trachea, and the intrapulmonary bronchi.27 The trachea 
and bronchi are cartilaginous, do not change shape signifi-
cantly with ventilation, and do not participate in gas 
exchange. Bronchioles, approximately 1 mm in diameter or 
less, have no cartilage and are exceedingly numerous and 
short. They consist of  approximately five branching genera-
tions and end at the terminal bronchioles. In contrast to the 
bronchi, the bronchioles are tightly embedded in the con-
nective tissue framework of  the lung and therefore enlarge 
passively as lung volume increases.28 Histologically the 
bronchioles down to and including the terminal bronchi-
oles ought to contribute approximately 25% to the ana-
tomic dead space. In life, however, they contribute little 
because of  gas-phase diffusion and mechanical mixing in 
the distal airways resulting from the cardiac impulse. By 
definition, the respiratory bronchioles and alveolar ducts 
participate in gas exchange and thus do not contribute to 
the anatomic dead space. The volume of  the respiratory 
bronchiole-alveolar duct system is approximately one third 
of  the total alveolar volume, and it is into this space that the 
fresh-air ventilation enters during inspiration.

Most airway resistance resides in the upper airway and 
bronchi. Normally the large airways maintain partial con-
striction. The minimal airway diameter in the human lung, 

composed of  laminin, collagens, elastin and reticulin fibrils, 
fibronectin, and tenascin (see Fig. 1-6).

AIRWAYS

The airways, forming the connection between the outside 
world and the terminal respiratory units, are of  central 
importance to our understanding of  lung function in health 
and disease. Intrapulmonary airways are divided into three 
major groups: bronchi (Fig. 1-7), bronchioles (including the 
terminal bronchioles) (Fig. 1-8), and respiratory bronchioles 
(Fig. 1-9; see Fig. 1-8). By definition, bronchi have cartilage 
in their wall, whereas bronchioles do not. Respiratory bron-
chioles serve a dual function as airways and as part of  the 
alveolar volume (gas exchange).

Figure 1-7 A bronchus. The bronchial wall is composed of mucosa (M), 
lamina propria (LP), smooth muscle (SM), and submucosa (S). Seromucous 
glands (G) are located between the spiral bands of smooth muscle and 
cartilaginous plates (CP). Diffuse lymphoid tissue (L) has infiltrated the 
lamina propria and submucosa. (Human lung surgical specimen, right 
middle lobar bronchus, 2-µm-thick glycol methacrylate section, light 
microscopy.) 
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Figure 1-8 A terminal bronchiole and respiratory bronchiole. The wall 
of the terminal bronchiole (TB) is constructed of a single layer of ciliated 
cuboidal epithelium that rests over thin, discontinuous bands of smooth 
muscle and loose areolar connective tissue (CT). In contrast, the wall of the 
respiratory bronchiole (RB) is only partially lined by ciliated cuboidal epi-
thelium (lower left side). The remainder of its wall is lined by squamous 
epithelium (upper right side). The connective tissue also surrounds the 
adjacent pulmonary arteriole (PA). (Human lung surgical specimen, 10-µm-
thick paraffin section, light microscopy.) 
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Figure 1-9 Longitudinal sections along bronchioles. A, Diameter 
remains relatively constant along the terminal bronchiole (TB), respiratory 
bronchiole (RB), and alveolar duct (AD). Alveoli (A) communicate with the 
gas-exchange ducts (RB and AD). B, This longitudinal section along a res-
piratory bronchiole (RB) and alveolar duct (AD) also shows that their diam-
eter is relatively constant and that both gas-exchange ducts communicate 
with clusters of alveoli (A). (Human lung surgical specimens, 10-µm-thick 
paraffin section, light microscopy.) 
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Figure 1-10 Cross sections of two bronchioles (Brl) that would contrib-
ute to increased airway resistance. On the left is a bronchiole that is 
partially narrowed, evident by the folded and thick epithelium. The bron-
chiole to the right is completely narrowed. Its lumen is obliterated by the 
infolded epithelium. This bronchiole’s smooth muscle is thick (arrow), sug-
gesting that the narrowing is related to constriction of the smooth muscle. 
Each bronchiole is flanked by a pulmonary arteriole (PA). (Sheep lung, 
5-µm-thick paraffin section, light microscopy.) 
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50 µm Figure 1-11 The bronchial mucosa consists of pseudostratified, columnar 
epithelium with cilia (C) and goblet cells (black arrowhead). The cilia, which 
form a thick carpet, move rhythmically and thereby propel liquid, mucus, 
cells, and debris centrally toward the pharynx. The dark band immediately 
beneath the cilia (black arrow) is produced by the basal bodies. By trans-
mission electron microscopy, basal bodies are recognized as modified 
centrioles. A lymphocyte (white arrowhead) is intercalated among the epi-
thelial cells. A bronchial blood vessel (BV) is located beneath the mucosal 
layer. (Human lung surgical specimen, 10-µm-thick paraffin section, light 
microscopy.) 
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Figure 1-12 The respiratory bronchiole (RB)–alveolar duct (AD) junction is 
demarcated by an abrupt transition (arrowhead) from low cuboidal epithe-
lial cells (E) with cilia to squamous epithelial cells. Submerged in the lining 
liquid (arrow) are an alveolar macrophage (AM) and cilia (Ci). Airway 
smooth muscle cells (SM) extend to this level of the airway tree. (Human 
lung surgical specimen, transmission electron microscopy). 
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Figure 1-13 Cells constituting the bronchial epithelium are ciliated epi-
thelial cells (CE), goblet cells (G), and basal cells (B). Goblet cells have 
abundant mucous granules in the cytoplasm, and their apical surface is 
devoid of cilia. Basal cells, as their name indicates, are located along the 
abluminal portion of the lining epithelium, adjacent to the basal lamina. 
The arrows at the apical surface of the airway cells indicate the location of 
junctional complexes between contiguous epithelial cells. (Human lung 
surgical specimen, transmission electron microscopy.) 
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approximately 0.5 mm, is reached at the level of  the termi-
nal bronchioles; succeeding generations of  exchange ducts 
(respiratory bronchioles and alveolar ducts) are of  constant 
diameter (see Fig. 1-9).29,30 The functional significance of  
centralized resistance is that the terminal respiratory units 
(the physiologic alveoli) are regionally ventilated chiefly in 
proportion to their individual distensibilities (compliances) 
because most of  their airway resistance is common. This is 
demonstrated normally by the finding that regional lung 
ventilation is dependent upon the initial volumes of  the 
alveoli. Terminal respiratory units toward the top of  the 
lung, which are more expanded at FRC, do not receive as 
great a share of  the inspiratory volume as do the terminal 
respiratory units near the bottom of  the lung.

The balance between anatomic dead space volume, for 
which the airway diameter ought to be as small as possible 
to maximize efficient alveolar ventilation (dead space–to–
tidal volume ratio), and airflow resistance, for which the 
airway diameter ought to be as large as possible to minimize 
the work of  breathing, requires a compromise. Normally, 
anatomic dead space is not maximal, nor is resistance 
minimal. In disease, by contrast, airways may narrow (Fig. 
1-10), which increases resistance.

The cellular complexity of  the airways is indicated by the 
nearly 50 distinct cell types found there, at least 12 of  
which are epithelial cells on the airway surface.31 Nearly 
half  of  the epithelial cells in the normal human airway are 
ciliated at all airway generations (Fig. 1-11) down to bron-
chioles (Fig. 1-12).32 Cilia move the superficial liquid lining 
layer (Fig. 1-13; see Fig. 1-11) continually toward the 
pharynx from deep within the lung. As the superficial lining 
liquid moves centripetally, the total perimeter of  the airways 
decreases markedly.5 If  the lining liquid volume remained 
constant, the liquid layer ought to thicken but this does not 
happen, suggesting that much of  the liquid is reabsorbed 
during its ascent along the airways.

The presence of  apical junctional complexes between 
airway epithelial cells (see Fig. 1-13) has important func-
tional implications for metabolically-regulated secretion 
into and absorption of  electrolytes and water from the 
lining liquid. Apical junctional complexes consist of  three 
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tree (see Fig. 1-7) and, to a lesser extent, along the blood 
vessels.48,49 These patches apparently develop in response to 
antigenic stimulation because they are not present at birth 
in humans or in germ-free animals.48,49 Lymphocytes in 
these aggregates are principally B cells that express mainly 
IgA immunoglobulins.47 The presence of  lymphocytes 
along the airways provides a reminder that the respiratory 
system is constantly challenged by airborne immunologic 
stimuli. The tracheobronchial lymphoid tissue, including 
bronchus-associated lymphoid tissue, appears to provide an 
important locus for both antibody-mediated and cell-
mediated immune responses. Another important locus of  
immune response is provided by the epithelial cells that line 
the airways and constitute the airway glands. Their impor-
tance stems from production of  Toll-like receptors, whose 
role is identification of  pathogen-associated molecular pat-
terns.50 Activation of  Toll-like receptors leads to down-
stream signaling cascades that are involved in mucin 
production, leukocyte recruitment, antimicrobial peptide 
production, wound repair, and vascular formation.51-55

Some of  the other cells associated with the airways are 
smooth muscle cells, mast cells, basal cells, and club cells 
(Clara). Smooth muscle cells form circular bands around 
the airway epithelium as far peripherally as the respiratory 
bronchioles (see Figs. 1-7 and 1-8). Smooth muscle tone is 

elements: zonula occludens (tight junction), zonula adherens, 
and macula adherens (desmosome).33 Tight junctions sub-
serve two important functions: (1) restriction of  passive dif-
fusion by blocking the lateral intercellular space and (2) 
polarization of  cellular functions (ion and water transport) 
between the apical and basolateral membranes.34 Polariza-
tion of  chloride and sodium transport allows the airway 
epithelium either to secrete or to absorb ions, with associ-
ated water movement.

Trapping of  foreign material, such as particulates or bac-
teria, is accomplished by mucins. Mucins are complex gly-
coproteins that form gels, exemplified by MUC5A. MUC5A 
is present in the lung of  humans.35,36 Other mucins (e.g., 
MUC5B, MUC7)37,38 become expressed by airway epithelial 
cells in diseases, such as cystic fibrosis. In that disease, 
MUC5B is produced by airway epithelial cells.39 Normally 
MUC5B is produced by airway glandular cells,37 but, in a 
variety of  pulmonary diseases, its cell source is expanded.

Glands are limited to the submucosa of  the bronchi. 
Airway glands secrete water, electrolytes, and mucins into 
the lumen (Fig. 1-14; see Fig. 1-7). Studies of  the regulation 
of  secretion in vivo and in vitro have shown that release can 
be modulated by neurotransmitters, including cholinergic, 
adrenergic, and peptidergic transmitters,40,41 and by inflam-
matory mediators such as histamine,42 platelet-activating 
factor,43 and eicosanoids.44 Goblet cells, which are mucin-
secreting epithelial cells, also are present at most airway 
levels (see Fig. 1-13). Goblet cells decrease in number 
peripherally, normally disappearing at terminal bronchi-
oles.10,45 The absence of  airway glands and goblet cells distal 
to ciliated epithelial cells makes sense because that arrange-
ment should minimize the flow of  mucus backward into 
alveolar ducts and alveoli.

Lymphocytes are frequently seen intercalated between 
airway epithelial cells (Fig. 1-15; see Fig. 1-11). These cyto-
toxic T lymphocytes undergo IgA class antibody responses.46 
T and B lymphocytes also accumulate in the lamina propria 
beneath the airway epithelium.47

Although most foreign material and immunologic stimuli 
are carried up the airways by mucociliary action, some are 
cleared by the lymphatics (discussed at the end of  this 
chapter). In addition, lymphoid tissue is located in the 
lungs. Patches are distributed along the tracheobronchial 

Figure 1-14 Submucosal glands shown at a higher magnification view 
than in Figure 1-7. These mixed, compound tubuloacinar glands contain 
mucus-secreting cells (M) and serous-secreting cells (S). The latter type 
form crescentic caps, or demilunes, over the ends of the acini. Mucus-
secreting cells are the predominant glandular cell type. 

S

20 µm

M

Figure 1-15 The terminal airway epithelium consists mainly of ciliated 
epithelium (CE) and nonciliated club cells (Clara) (CL). Club cells have the 
ultrastructural features of secretory cells; namely, they possess basally 
located rough endoplasmic reticulum, perinuclear Golgi apparatus, api-
cally located smooth endoplasmic reticulum, and prominent membrane-
bound granules (arrowheads). A lymphocyte (L) is intercalated among 
the epithelial cells. A small portion of a neuroendocrine cell (NEC) contain-
ing characteristic dense-cored vesicles is also visible at the base of the 
epithelial cells. (Human lung surgical specimen, transmission electron 
microscopy.) 
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BRONCHIAL CIRCULATION

The trachea (and esophagus), main-stem bronchi, and pul-
monary vessels into the lung (see Fig. 1-1), as well as the 
visceral pleura in humans (see “The Pleural Space and 
Pleuras” toward the end of  this chapter), are supplied by the 
bronchial (systemic) circulation.45,76,77 Measurements of  
bronchial circulation, by microsphere studies in animals, 
indicate that flow is 0.5% to 1.5% of  cardiac output and is 
predominantly to the large airways.45,76,78-81 The bronchial 
arteries arborize into bronchial capillaries that form a 
network in the lamina propria, in the submucosa, and in 
the region external to the cartilage of  bronchi, as well as in 
the lamina propria of  neighboring pulmonary arteries.82 
Venous blood from the trachea and large airways enters 
bronchial venules, which converge to form bronchial veins 
that drain into the azygos or hemiazygos veins. Thus a sub-
stantial part of  bronchial blood flow returns to the right side 
of  the heart. Deeper in the lung, however, bronchial blood 
passes via short anastomotic vessels into the pulmonary 
venules, thus reaching the left side of  the heart to contrib-
ute to the venous admixture.

The bronchial circulation has enormous growth poten-
tial, which is in contrast to the pulmonary circulation, 
which after childhood is unresponsive. In long-standing 
inflammatory and proliferative diseases, such as bronchiec-
tasis or carcinoma, bronchial blood flow may be greatly 
increased.76,83 Scar tissue and tumors larger than 1 mm in 
diameter receive their blood supply via the bronchial circu-
lation.84,85 The bronchial circulation is also the primary 
source of  new vessels for repair of  tissue after lung injury. 
As will be discussed near the end of  this chapter, the bron-
chial circulation also supplies the visceral pleura of  species 
that have thick visceral pleura, including humans.

PULMONARY CIRCULATION

In humans the pulmonary artery enters each lung at the 
hilum in a loose connective tissue sheath adjacent to the 
main bronchus (see Fig. 1-1). The pulmonary artery travels 
adjacent to and branches with each airway generation 
down to the level of  the respiratory bronchiole (Fig. 1-17). 
The anatomic arrangements of  the pulmonary arteries and 
the airways are a continual reminder of  the relationship 
between perfusion and ventilation that determines the effi-
ciency of  normal lung function. Although the pulmonary 
veins also lie in loose connective tissue sheaths adjacent to 
the pulmonary artery and main-stem bronchus at the 
hilum, once inside the lung they follow Miller’s dictum45 
that the veins will generally be found as far away from the 
arteries and airways as possible. Peripherally, in the respira-
tory tissue the pulmonary arteries branch out from the core 
of  the terminal respiratory unit, whereas the veins occupy 
the surrounding connective tissue envelope (Fig. 1-18). 
Each small muscular pulmonary artery supplies a specific 
volume of  respiratory tissue, whereas the veins drain por-
tions of  several such zones.

Considerable quantitative data about the pulmonary cir-
culation are available for the human lung (Table 1-2).86-88 
Although most of  the intrapulmonary blood volume is in 

altered by the autonomic nervous system and by mediators 
released from mast cells, inflammatory cells, and neuroen-
docrine cells. During normal breathing, slight tonic con-
traction of  small airway smooth muscle cells and reflex 
contraction of  the larger airways stiffens them against 
external compression, as may result from forced expiration 
or coughing. The effector of  these responses is the parasym-
pathetic limb of  the autonomic nervous system (vagus 
nerves). Therefore excessive vagal input causes severe con-
traction of  airway smooth muscle and increases mucus 
secretion by submucosal glands, both of  which limit airflow 
through conducting airways by decreasing airway lumen 
diameter and increasing airway resistance.

Mast cells in the human lung contain membrane-bound 
secretory granules that are characteristically filled by 
scrolled, crystalline, or particulate inclusions (Fig. 1-16). 
These granules contain a host of  inflammatory mediators, 
including histamine, proteoglycans, lysosomal enzymes, 
and metabolites of  arachidonic acid.56 Not only can these 
mediators induce bronchoconstriction, they can also stimu-
late mucus production and induce mucosal edema by 
increasing permeability of  bronchial vessels.

Basal cells are located along the basal lamina of  airways 
(see Fig. 1-13). These small epithelial cells have been classi-
cally thought to be precursor cells for other airway epithe-
lial cells, including ciliated cells.31,57 However, more recent 
experiments suggest that columnar secretory cells or club 
cells may also differentiate into ciliated epithelial cells fol-
lowing tissue injury.58,59

Club cells (Clara), prominent in the terminal airways, are 
interspersed among the ciliated epithelial cells, are noncili-
ated, and have large apical granules (see Fig. 1-15).60,61 
Club cells have at least four functions in the lung. One func-
tion is serving as progenitor cells for themselves and for cili-
ated epithelial cells.62,63 A second function is xenobiotic 
metabolism via the cytochrome P-450 monooxygenase 
system.64-67 A third function is secretion: club cells are a 
source of  surfactant proteins (SPs; SP-A, -B, and -D)68-70 
and also of  lipids, proteins (club cell 10-kDa protein), glyco-
proteins, and modulators of  inflammation (leukocyte pro-
tease inhibitor and trypsin-like protease).71-73 A fourth 
function is liquid balance by influencing ion channels.74,75

Figure 1-16 Mast cell (M) located adjacent to an airway. The mast cell 
flanks airway smooth muscle cells (SM). Granules in mast cells have hetero-
geneous morphologic characteristics, including whorled and scrolled con-
tents (arrow). (Human lung surgical specimen, transmission electron 
microscopy.) 
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the larger vessels down to approximately 500 µm in diam-
eter, nearly all of  the surface area is in the smaller vessels. 
For example, the surface area of  arterioles 13 to 500 µm in 
diameter exceeds that of  the larger vessels by a factor of  
two, and the maximal capillary surface area is 20 times that 
of  all other vessels.

Because the vertical height of  the lung at FRC is 24 cm 
(see Fig. 1-2), the pressure within the pulmonary blood 
vessels varies by 24 cm H2O over the full height of  the lung. 
Thus, if  pulmonary arterial pressure is taken as 20 cm H2O 
(15 mm Hg, 1.9 kPA) at the level of  the main pulmonary 
artery, which is halfway up the height of  the lung, pressure 
in the pulmonary arteries near the top of  the lung will be 
12 cm H2O, whereas pressure in pulmonary arteries near 
the bottom will be 36 cm H2O. Pulmonary venous pressure, 
which is 8 cm H2O at the level of  the pulmonary artery in 
midchest (left atrial pressure), would be −4 cm H2O near the 
top of  the lung and +20 cm H2O at the bottom. In the 
normal lung the blood volume is greater at the bottom 
because of  increased luminal pressure, which expands 
those vessels and increases their volume. This effect of  dis-
tention also decreases the contribution of  the blood vessels 
at the bottom of  the lung to total pulmonary vascular 
resistance.

From the time after birth through adulthood, the normal 
pulmonary circulation is a low-resistance circuit. The resis-
tance is distributed somewhat differently, however, than in 
the systemic circulation, where the major drop in resistance 
is across the arterioles. Although the pressure drop along 
the pulmonary capillaries is only a few centimeters of  water 
(similar to the pressure drop in systemic capillaries), the 
pulmonary arterial and venous resistances are low, so a 
relatively larger fraction of  the total pulmonary vascular 
resistance (35% to 45%) resides in the alveolar capillaries 
at FRC.89,90 (For further information about pulmonary cir-
culation in health and disease see Chapters 6 and 58.)

Vasoactivity plays an important part in the local regula-
tion of  blood flow in relation to ventilation.91,92 Because 
smooth muscle can be found in the pulmonary vessels on 
both the arterial and the venous side down to precapillary 
and postcapillary vessels,93,94 any segment can contribute 
to active vasomotion.95 In pathologic conditions, vascular 
smooth muscle may extend down to the capillary level.96,97

Theoretically, gas exchange may take place through the 
thin wall of  almost any pulmonary vessel. At normal alveo-
lar oxygen tensions, however, little oxygen and carbon 
dioxide is exchanged before the blood reaches the true capil-
laries.98 In the pulmonary arterioles, because of  their small 
volume (see Table 1-2), blood flow is rapid. As blood enters 
the vast alveolar wall capillary network, its velocity slows, 
averaging approximately 1000 µm/sec (or 1 mm/sec). 
Flow in the microcirculation is pulsatile because of  the low 
arterial resistance.99 Pulsations reach the microvascular 
bed from both the arterial and the venous sides. In fact, one 
sign of  severe pulmonary hypertension is the disappearance 
of  capillary pulsations.100

The capillary network is long and crosses several alveoli 
(Fig. 1-19) of  the terminal respiratory unit before coalesc-
ing into venules. The vast extent of  the capillary bed 
together with the length of  the individual paths means  
a reasonable transit time for red blood cells, during which 
gas exchange can take place. The anatomic estimate of  

Figure 1-17 Divisions of the pulmonary artery (PA) travel beside the 
bronchi and bronchioles (Br) out to the respiratory bronchioles. Thus at all 
airway generations an intimate relationship exists with pulmonary arterial 
generations. Note that the loose-binding (peribronchovascular) connec-
tive tissue sheaths are not distended, compared to the interstitial edema 
cuffs in Figure 1-5. (Frozen normal sheep lung, unstained.) 
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Figure 1-18 The terminal respiratory unit (the physiologist’s alveolus) con-
sists of the alveoli (A) and alveolar ducts (AD) arising from a respiratory 
bronchiole (RB). Each unit is roughly spherical, as suggested by the dashed 
outline. Pulmonary venules (PV) are peripherally located. PA, pulmonary 
artery; TB, terminal bronchiole. (Normal sheep lung, somewhat underin-
flated, 2-µm-thick glycol methacrylate section, light microscopy.) 
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Table 1-2 Quantitative Data on Intrapulmonary Blood Vessels 
in Humans

Vessel Class (with 
Diameter)

Volume 
(mL)

Surface Area 
(m2)

Reference 
No.

Arteries (>500 µm) 68 0.4 86

Arterioles (13–500 µm) 18 1.0 86

Capillaries (10 µm) 60–200 50–70 87

Venules (13–500 µm) 13 1.2 88

Veins (>500 µm) 58 0.1 88
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surface tension.104 This may account for the fact that, even 
under zone 1 conditions in which alveolar pressure exceeds 
both arterial and venous pressure, some blood continues to 
flow through the lung.105 One has to go several centimeters 
up into zone 1 before blood flow stops completely. (For a 
discussion of  distribution of  pulmonary blood flow and 
lung zones, see Chapter 4.)

An important question is whether the normal human 
lung contains connections between the pulmonary arteries 
and veins that permit some portion of  pulmonary blood 
flow to bypass the capillary network. Such vessels may 
develop congenitally or pathologically.106 In the normal 
lung, however, functioning short circuits probably do not 
exist. (Pathologic arteriovenous communications are dis-
cussed in Chapter 61.)

Pulmonary capillaries are lined by continuous (non-
fenestrated) endothelial cells (Fig. 1-20). These attenuated 
cells have an individual area of  1000 to 3000 µm2 and an 
average volume of  600 µm3.107 These large, flat cells cover 
a total surface area of  approximately 130 m2.107 Other 
structural features of  pulmonary capillary endothelial cells 
are the large number of  plasmalemmal vesicles and small 
number of  organelles (see Fig. 1-20). Despite having rela-
tively few organelles, pulmonary capillary endothelial cells 
do have organelles involved in protein synthesis, such as 
endoplasmic reticulum, ribosomes and Golgi apparatus, 
and endocytosis (caveolae, multivesicular bodies, and lyso-
somes).108 The endocytic apparatus appears to participate 
in receptor-mediated uptake and transport (transcytosis) of  
albumin, low-density lipoproteins, and thyroxin.109-113 
Another route for passage of  solutes and water is between 
adjacent endothelial cells (transcellular transport). 
However, that passage route is restricted by specialized 
junctional complexes called “tight junctions.”114,115

In addition to its function in gas exchange, the pulmo-
nary circulation is involved in a number of  other functions 
important to homeostasis. The pulmonary vascular bed 
serves as a capacitance reservoir between the right and left 
sides of  the heart. Consequently, the reservoir of  blood in 
the pulmonary circulation is sufficient to buffer changes in 
right ventricular output for two to three heartbeats. The 

approximately 0.5 to 1 second average transit time is essen-
tially the same as that found using the carbon monoxide 
diffusing capacity method, in which one divides capillary 
blood volume by cardiac output to obtain mean capillary 
transit time.101 In the normal lung sufficient time is avail-
able for equilibrium between the oxygen and carbon dioxide 
tensions in the alveoli and the erythrocytes in the pulmo-
nary capillaries. Only under extreme stress (heavy exercise 
at low inspired oxygen tensions) or in severe restrictive lung 
disease would the red blood cells be predicted to pass through 
the microcirculation without enough time to reach diffu-
sion equilibrium.102

Normally, capillary blood volume is equal to or greater 
than stroke volume. Under normal resting conditions, the 
volume of  blood in the pulmonary capillaries is well below 
its maximal capacity, however. Recruitment can increase 
this volume by a factor of  about three. Thus the normal 
capillary blood volume of  60 to 75 mL is one third of  the 
capacity (200 mL) measured by quantitative histologic 
analysis.5

Anatomically, the pulmonary blood vessels can be divided 
into two groups in a manner similar to the connective tissue 
compartments: extra-alveolar and alveolar. Extra-alveolar 
vessels lie in the loose-binding connective tissue (peribron-
chovascular sheaths, interlobular septa). Extra-alveolar 
vessels extend into the terminal respiratory units. Arteries 
as small as 100 µm in diameter have loose connective tissue 
sheaths. This is in contrast to the bronchioles, which are 
tightly embedded in the lung framework from the bronchi-
oles (1 mm in diameter) onward. Alveolar vessels lie within 
the alveolar walls and are embedded in the parenchymal 
connective tissue. They are subject to whatever forces 
operate at the alveolar level. They are referred to as alveolar 
vessels in the sense that the effective hydrostatic pressure 
external to them is alveolar pressure. Not all of  the alveolar 
vessels are capillaries, however. Small arterioles and venules, 
which bulge into the air spaces, may be affected by changes 
in alveolar pressure. Likewise, not all of  the capillary bed is 
alveolar under all conditions.103 The corner capillaries in 
the alveolar wall junctions are protected from the full effects 
of  alveolar pressure by the curvature and alveolar air-liquid 

Figure 1-19 An alveolar capillary (C) is shared longitudinally along its path 
across three alveoli (A). The alveolar walls are flattened, and the wall junc-
tions are sharply curved because the lung is fixed in zone 1 conditions. 
Some red blood cells remain in the capillary at an alveolar corner (arrow). 
(Perfusion-fixed normal rat lung, PAW = 30 cm H2O, PPA = 25 cm H2O, 
PLA = 6 cm H2O, scanning electron microscopy. PAW, airway pressure; 
PLA, left atrial pressure; PPA, pulmonary artery pressure.) 

5 µm

A

C

A

A

Figure 1-20 The thick (Tk) and thin (Tn) sides of an alveolar capillary (C) 
change as the capillary crosses between alveoli (A). The basal laminae of 
the capillary endothelium and alveolar epithelium fuse in the thin regions. 
The nucleus (Nu) of an endothelial cell (E) is visible above a red blood cell 
(R). I, alveolar type I cell. (Human lung surgical specimen, transmission 
electron microscopy). 
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sure elevations as small as 5 cm H2O. The calcium transients 
seen in a subset of  Ca2+ oscillating cells are referred to as 
“pacemakers” and are located in pulmonary venular capil-
laries.137 The oscillations are propagated to adjacent endo-
thelial cells. This endothelial response may be relevant in 
the pathogenesis of  pressure-induced lung microvascular 
injury.

TERMINAL RESPIRATORY UNITS

The “alveolus” of  which the physician or pulmonary physi-
ologist speaks is referred to as the “terminal respiratory 
unit” by the anatomist. The terminal respiratory unit con-
sists of  all the alveolar ducts, together with their accompa-
nying alveoli, that stem from the most proximal (first) 
respiratory bronchiole (see Fig. 1-18). The terminal respira-
tory unit has both a structural and a functional existence 
and was first described by Hayek.10 In the human lung 
this unit contains approximately 100 alveolar ducts and 
2000 alveoli. At FRC the unit is approximately 5 mm in 
diameter, with a volume of  0.02 mL. In normal adult 
humans, there are approximately 150,000 such units in 
both lungs combined.5 The acinus, an anatomic unit 
popular among pathologists, contains 10 to 12 terminal 
respiratory units.138-140

The functional definition of  the terminal respiratory unit 
is that, because gas phase diffusion is so rapid, the partial 
pressures of  oxygen and carbon dioxide are uniform 
throughout the unit.141 Diffusion is the name for a thermo-
dynamic process by which molecules express their kinetic 
energy. Net diffusion takes place when a concentration dif-
ference of  a substance exists between two volumes. Thus 
oxygen in the alveolar duct gas will diffuse into the alveoli, 
because the incoming air has a higher oxygen concentra-
tion than the alveolar gas. Oxygen will also diffuse from the 
gas adjacent to the alveolar wall through the air-blood 
barrier into the red blood cells flowing in the capillaries (Fig. 
1-22), where oxygen combines with hemoglobin. Carbon 
dioxide diffuses in the opposite direction. A key point about 

pulmonary vascular bed also serves as a filter, trapping any 
embolic material from systemic vascular beds. For example, 
during intravascular coagulation or in processes involving 
platelet or neutrophil aggregation, the predominant site of  
sequestration is the lung. The main anatomic reason for 
this is that 75% of  the total circulating blood volume is in 
the venous circuit, and the lung’s microvascular bed is the 
first set of  small vessels through which the blood flows. 
Moderate numbers of  microemboli generally produce no 
detectable dysfunction because of  the huge array of  parallel 
pathways in the microcirculation. At most, microemboli 
temporarily block flow to a portion of  or to an entire termi-
nal respiratory unit. The fate of  such emboli is not clear. 
Some are phagocytosed and removed into the lung tissue.116 
Some emboli can be degraded to a small size, pass through 
into the systemic circulation, and be removed by the reticu-
loendothelial system. One example of  particulate matter 
that filters in the lung is the macroaggregated serum 
albumin used in lung-scanning procedures. (Further infor-
mation about the pathophysiology of  thromboembolic dis-
orders is presented in Chapter 57.)

The endothelial cells of  the pulmonary circulation are 
capable of  a remarkable number of  metabolic activities. 
This is not to say that endothelial cells in other organs do 
not have similar activities. But the central position of  the 
lung, through which the entire cardiac output passes, 
places extra responsibility and extra importance upon its 
endothelial cells.117-119 For example, angiotensin I, bradyki-
nin, and prostaglandin E1 are nearly completely inactivated 
during a single pass through the lungs. Pulmonary endo-
thelial cells also express at least two subtypes of  endothelin 
receptors (A and C).120-122 Their expression coincides with 
rapid removal of  endothelin, suggesting that the lung 
microcirculation participates in clearance of  this potent 
vasoconstrictor peptide from the blood. Conversely, a potent 
vasodilator, nitric oxide, is generated locally in the lung, 
through expression of  endothelial nitric oxide synthase.123-129

Endothelial cells may have a role in regulating vascular 
tone and reactivity. An indication of  this regulatory role  
can be seen in the direct contacts between pulmonary  
endothelial cells in small arteries and veins and the  
surrounding smooth muscle cells. Such myoendothelial 
contacts have been described in the lungs of  a number of  
small animals,130-133 and we have seen them in the human 
lung (Fig. 1-21). Although their functional importance is 
unknown, they may have some bearing on endothelial-
dependent vasoactivity.134

Regulation of  vasoactivity by endothelial cells may be 
facilitated by site-specific phenotypes of  endothelial cells 
(reviewed by Garlanda and Dejana135 and Gebb and 
Stevens136). For example, endothelial nitric oxide protein is 
more evident in small pulmonary arterial vessels than in 
capillaries.123-128 Presumably the more evident localization 
reflects the functional role of  nitric oxide in regulating pul-
monary artery smooth muscle tone. On the other hand, 
capillary endothelial cells appear to have more expression-
activated message for leukocyte adhesion molecules than 
arterial endothelial cells.135,136 Greater expression by capil-
lary endothelial cells may contribute to sequestration of  
leukocytes in the capillary bed during acute inflammatory 
reactions. Another endothelial cell function that is site spe-
cific in the lung is Ca2+ transients that are induced by pres-

Figure 1-21 A myoendothelial cell contact (arrow) is made between a 
pulmonary arteriolar (PA) endothelial cell (E) and a subjacent vascular 
smooth muscle cell (SM). The distribution and functional significance of 
such contacts is unknown. One potential role may be to facilitate delivery 
of endothelium-derived relaxing factor to smooth muscle cells. Nu, nucleus 
of the endothelial cell. (Human lung surgical specimen, transmission elec-
tron microscopy). 
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subsequent expiration.145 This explains why it is difficult to 
deposit aerosols on the alveolar walls and why large inspired 
volumes and breath-holding are important for obtaining 
efficient alveolar deposition.

The anatomic alveolus is not spherical (Fig. 1-23; see Fig. 
1-19). It is a complex geometric structure with flat walls 
and sharp curvature at the junctions between adjacent 
walls. The most stable configuration is for three alveolar 
walls to join together, as in foams.5 The resting volume of  
an alveolus is reached at minimal volume, which is 10% to 
14% of  total lung capacity. When alveoli go below their 
resting volume, they must fold up because their walls have 
a finite mass. Most of  the work required to inflate the normal 
lung is expended across the air-liquid interface to overcome 
surface tension; the importance of  the air-liquid interface is 
demonstrated by the low pressure required to “inflate” a 
liquid-filled lung with more liquid.146

The phenomenon of  terminal respiratory unit, or alveo-
lar, stability is confused because not only is air-liquid inter-
facial tension involved, but each flat alveolar wall is part of  
two alveoli and both must participate in any change. There-
fore atelectasis does not usually involve individual alveoli 
but rather relatively large units (Fig. 1-24).147

The alveolar walls are composed predominantly of  pul-
monary capillaries. In the congested alveolar wall, the 
blood volume may be more than 75% of  the total wall 
volume. Alveoli near the top of  the lung show less filling of  
the capillaries than those at the bottom.148,149 This affects 
regional diffusing capacity, which is dependent on the 
volume of  red cells in the capillaries (see also eFig. 25-10).

The transition from the cuboidal epithelium of  the respi-
ratory bronchiole to alveolar squamous epithelium is abrupt 
(see Fig. 1-12). Although Macklin150 speculated that the 
permeability of  the bronchiole-alveolar epithelial junctions 
may be special, no definitive difference has been demon-
strated.151 The controversy continues as to whether this 
region shows unique permeability features that might  
participate in clearance of  particles or leakage of  
edema.152-154

The pleomorphic nature of  the alveolar epithelium and 
the light and electron microscopic structure of  its constitu-
ent cells have been described many times and will be only 
briefly summarized here. In normal mammals and other 
air-breathing species, including reptiles and amphibians, 
the alveolar epithelium is composed of  cuboidal alveolar 
type II cells and flattened type I cells (Fig. 1-25). Alveolar 
type II cells outnumber type I cells (≈15% versus 8% to 10% 
of  total peripheral lung cells, respectively), but type I cells 
account for approximately 90% to 95% of  the alveolar 
surface area of  the peripheral lung.155 The two cell types 
have different functions and structure.

The alveolar type II cell is the major synthesizing and 
secreting factory of  surfactant-associated proteins that 
affect adsorption of  surfactant lipids to an air-liquid inter-
face, surfactant recycling, and immunomodulatory func-
tions. Alveolar type II cells also express receptors for several 
growth factors and secretagogues, enzymes, matrix pro-
teins, and epithelial mucins.156-161 The presence of  various 
ion channels and transporters supports earlier evidence 
that alveolar type II cells are actively involved in liquid 
resorption and transepithelial water fluxes.162 Alveolar type 
II cells are reported to express some species of  aquaporin 

Figure 1-22 Cross section of an alveolar wall showing the path for 
oxygen and carbon dioxide diffusion. The thin side of the alveolar wall 
barrier (short double-headed arrow) consists of type I epithelium (I), inter-
stitium (*) formed by the fused basal laminae of the epithelial and endothe-
lial cells, capillary endothelium (E), plasma in the alveolar capillary (C), and 
finally the cytoplasm of the red blood cell (R). The thick side of the gas-
exchange barrier (long double-headed arrow) has an accumulation of 
elastin (EL), collagen (COL), and matrix that jointly separate the alveolar 
epithelium from the alveolar capillary endothelium. As long as the red 
blood cells are flowing, oxygen and carbon dioxide probably diffuse across 
both sides of the air-blood barrier. A, alveolus; Nu, nucleus of the capillary 
endothelial cell. (Human lung surgical specimen, transmission electron 
microscopy.) 
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diffusion is that the process is much faster in the gas phase 
than in water. Thus the terminal respiratory unit size is 
defined in part by the fact that gas molecules can diffuse and 
equilibrate anywhere within the unit more rapidly than 
they can diffuse through the membrane into the blood. The 
main problem is that the solubility of  oxygen in water is low 
relative to its concentration in gas. Water becomes a problem 
when edema liquid accumulates in alveoli and/or intersti-
tium in the alveolar walls. Carbon dioxide is much more 
soluble in water (20 times the solubility of  oxygen in water), 
and therefore carbon dioxide diffuses rapidly into the gas 
phase, even though the driving pressure for carbon dioxide 
diffusion is only one tenth that for oxygen entering the 
blood.

It is almost impossible to demonstrate that diffusion is 
limiting in the normal lung, except during heavy exercise 
while breathing gas containing very low oxygen concentra-
tions.102 Even then, diffusion limitation may not be as 
important as the reduced transit time of  the red blood cells. 
However, apart from these observations during heavy exer-
cise, most disorders of  oxygenation are due to ventilation-
perfusion inequalities.142

All portions of  the terminal respiratory unit participate 
in volume changes with breathing.143,144 Thus, if  a unit 
were to increase its volume from FRC, the alveolar gas that 
had been in the alveolar duct system would enter the 
expanding alveoli, together with a small portion of  the fresh 
air. Most of  the fresh air would remain in the alveolar duct 
system. This does not lead to any significant gradient of  
alveolar oxygen and carbon dioxide partial pressures 
because diffusion in the gas phase is so rapid that equilib-
rium is established within a few milliseconds. But nondif-
fusible (suspended or particulate) matter would remain 
away from the alveolar walls and be expelled in the 
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Figure 1-24 Histologic appearance of atelectasis. Atelectasis usually 
involves relatively large units of lung parenchyma, rather than individual 
alveoli. Alveolar walls in the atelectatic units are folded, distorting the 
shape of alveoli and capillaries, as shown in Fig. 1-23D. (Sheep lung injured 
by air emboli, 2-µm-thick glycol methacrylate section, light microscopy.) 

500 µm

Figure 1-25 Cells of the terminal respiratory unit. An alveolar macro-
phage (M) is located in an alveolus (A). Alveolar macrophages are the air 
space scavengers that are cleared either up the mucociliary escalator or 
into the interstitium. These cells can be activated to express and secrete 
cytokines, which may interact with other cells. Cells of the alveolar wall are 
the lining alveolar type I and II cells (I and II, respectively) and the enclosed 
capillary (C), endothelial cells (E), and interstitial cells (IC). (Human lung 
surgical specimen, transmission electron microscopy.) 
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Figure 1-23 Alveolar shape changes at representative points along the air deflation pressure-volume curve of the lung.  The four micrographs are 
at the same magnification. The air deflation pressures are as follows: A, 30 cm H2O (total lung capacity; TLC); B, 8 cm H2O (approximately 50% TLC); C, 
4 cm H2O (near functional residual capacity; FRC); and D, 0 cm H2O (minimal volume). Vascular pressures are constant (PPA = 25 cm H2O and PLA = 6 cm 
H2O). Intrinsic alveolar shape (Al) is maintained from TLC to FRC (A–C). The alveolar walls are flat, and there is sharp curvature at the junctions between 
adjacent walls. Note the flat shape of the alveolar capillaries (arrow) at TLC (A, lung zone 1 conditions) compared to their round shape (arrow) at FRC 
(C, lung zone 3 conditions). The alveolar walls are folded, and alveolar shape is distorted at minimal lung volume (D). The arrow in B identifies an alveolar 
type II cell at an alveolar corner. The arrowhead in B identifies a pore of Kohn. PAW, airway pressure; PLA, left atrial pressure; PPA, pulmonary artery pres-
sure. (Perfusion-fixed normal rat lungs, scanning electron microscopy.) 
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nisms, and general molecular regulation. Multivesicular 
bodies, organelles generally involved in endocytosis, are 
unusually abundant in alveolar type II cells and also express 
the ABC-type transporter membrane protein.169

Alveolar type I cells have extensive, attenuated cytoplas-
mic processes that form a large, thin surface area for gas 
exchange (see Fig. 1-25). The enormous surface area of  
these cells presents a logistical problem for transport of  new 
proteins and other substances within the cell over long dis-
tances and most likely contributes to the vulnerability of  
the type I cell to injury. Under normal conditions, alveolar 
type I cells attach via tight junctions to neighboring alveo-
lar type II cells to form a relatively impermeable seal between 
alveolar air and alveolar wall interstitial spaces. Although 
the cells express connexin proteins used to form gap junc-
tions,170 such junctions have not been consistently observed 
by electron microscopy. Lectin-binding and histochemical 
studies show that the chemical nature of  the alveolar type 
I cell apical membrane differs markedly from that of  type II 
cells, and this concept is confirmed by the identification of  
novel type I cell proteins. The alveolar type I cell protein 
aquaporin-5 is of  particular interest because this water 
channel has the highest water permeability known, at least 
in vitro.171 Type I cells also express epithelial Na+ channels 
and membrane Na+,K+-ATPase.172,173 These observations 
collectively imply that type I cells may play a role in pulmo-
nary water flux, although this is not yet proven.174,175

Alveolar type I cells contain many small, non–clathrin-
coated vesicles, or caveolae, that are open either to the 
alveolar lumen or interstitium or are detached from the 
surface as free vesicles in the cytoplasm.176 Immunohisto-
chemistry shows that the vesicles contain caveolin-1 
protein.177 Likewise, biochemical analyses178 show high 
concentrations of  caveolin protein and messenger RNA in 
lung where it is expressed mainly by type I and vascular 
endothelial cells. Caveolin-1 is a scaffolding protein that 
organizes specialized membrane phospholipids and pro-
teins into vesicles. Caveolin-1 can bind free cholesterol and 
modulate the efflux of  cholesterol from the cell when intra-
cellular concentrations rise,179 and, in other cell systems, its 
expression is tightly linked to the availability of  free choles-
terol. Caveolae appear to sequester various proteins into the 
vesicles; such proteins include growth factor receptors, sig-
naling molecules such as G proteins, Ca2+ receptors and 
pumps, and, in endothelial cells, endothelial nitric oxide 
synthase. The general effect of  sequestration of  receptors 
and signaling molecules into caveolae is to maintain them 
in a functionally quiescent state.

Trapping and clearance of  particulate matter impinging 
on the alveolar surfaces is vital and takes place in the alveo-
lar surface liquid. Within this liquid are suspended alveolar 
macrophages (see Fig. 1-12). The cytoplasm of  alveolar 
macrophages contains numerous storage granules that are 
blackened by ingested particulate matter that reach the 
alveoli (see Fig. 1-25). Alveolar macrophages actively 
express and secrete cytokines, such as tumor necrosis 
factor-α and transforming growth factor-α, that are impor-
tant for innate immunity. Some of  these alveolar macro-
phages penetrate into the lung interstitium and can be seen 
as deposits of  black pigment within interstitial foci. The 
majority of  alveolar macrophages that reach the terminal 
airways via the slow, upward flow of  alveolar lining liquid 

(AQP3, AQP1),163,164 water channels that may facilitate 
transepithelial liquid fluxes.

The typical alveolar type II cell (e.g., human, rodent) is a 
small (300 µm3), cuboidal cell with short stubby apical 
microvilli (Fig. 1-26). The distinguishing structural feature 
of  an alveolar type II cell is its content of  intracellular 
lamellar bodies, which are membrane-bound inclusions 
(diameter from <0.1 to 2.5 µm; mean, ≈1 µm) composed of  
stacked layers of  cell membrane–like material (see Fig.1-
26). These bodies contain pulmonary surfactant and are 
composed of  phospholipid species similar to those of  lavaged 
surfactant.165 Lamellar bodies also contain various pro-
teins, including SP-A, SP-B, and SP-C but probably not 
SP-D, typical lysosomal enzymes, an H+ transporter, a 
unique α-glucosidase, and other molecules.166-168 Alveolar 
type II cells also internalize and recycle surfactant lipids and 
proteins, but the cellular pathways are not well character-
ized in terms of  participating organelles, signaling mecha-

Figure 1-26 A, Alveolar type II (or granular) cells (II) are cuboidal epithelial 
cells that contain characteristic lamellar bodies (LB) in their cytoplasm and 
have stubby microvilli (Mv) that extend from the apical surface into the 
alveolar air space (AS). Other prominent cytoplasmic organelles in alveolar 
type II cells are mitochondria (Mi) and Golgi apparatus (G). Adjacent to the 
type II cell is a process of a type I cell (I). The abluminal surface of the 
epithelial cells rests on a continuous basal lamina (arrowhead). Nu, nucleus 
of an alveolar type II cell. B, The apical region of an alveolar type II cell has 
two lamellar bodies (LB), one of which has been fixed in the process of 
secretion by exocytosis (arrows). The lamellar osmiophilic bodies are 
believed to be the source of surface-active material (surfactant). Alveolar 
type II cells are usually located in the alveolar corners (see Fig. 1-23B). 
(Human lung surgical specimen, transmission electron microscopy.) 
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receptors (Hering-Breuer reflex) and irritant receptors, but 
most are unmyelinated, slow-conducting C fibers located in 
the terminal respiratory units, either along the bronchioles 
or within the alveolar walls (Fig. 1-28). There has been 
speculation about the function of  C fibers since Paintal first 
suggested that they played a role in sensing parenchymal 
connective tissue distortion, as during pulmonary vascular 
congestion and interstitial edema.189-192 The speculation 
has been neither proven nor disproven.

Chemosensory cells are also present in the upper and 
lower airways.193,194 This sensory role is subserved in the 
human lung by ciliated airway epithelium of  the upper and 
lower airways, which have functional components for bitter 
taste receptors.195 In addition, solitary epithelial brush cells 
with a chemosensory function are present in upper and 
lower airways.196 The afferent fibers travel in the vagus 
nerves and terminate in the vagal nuclei in the medulla 
oblongata.197

Submucosal sensory nerve endings, in contrast, are more 
reliably identifiable because the axon can be stained with 
methylene blue or silver nitrate. Furthermore, studies of  
axonal transport indicate that the peripheral processes of  
sensory ganglia project to the submucosa.198 Ultrastruc-
tural observations of  these fibers reveal axonal terminals 
containing numerous membranous inclusions and mito-
chondria, which are characteristic of  mechanoreceptors.

The motor pathways reach the lung through the sympa-
thetic and parasympathetic nervous systems. Preganglionic 
contributions to the sympathetic nerves arise from the 
upper four or five thoracic paravertebral ganglia, whereas 
the preganglionic parasympathetic nerves originate in the 
brain stem motor nuclei associated with the vagus nerves. 
Postganglionic sympathetic nerve fibers terminate near an 
airway, innervating vascular smooth muscle cells and sub-
mucosal glands. Postganglionic parasympathetic fibers 
extend from ganglia mainly located external to the smooth 
muscle and cartilage. Some submucosal ganglia exist, but 
they are generally smaller and have fewer neurons.

Mucosal motor nerve endings also exist.199 Characteristic 
ultrastructural features are axonal profiles containing 
many small, agranular vesicles and few mitochondria. 

are expelled with the surface film as it is pulled up onto the 
mucociliary escalator.180-182

LYMPHATICS

Another route for clearance of  particulate matter and liquid 
from the lung is the pulmonary lymphatic system. Lym-
phatics of  the lung are subdivided into two principal groups 
based on their location: a deep plexus and a superficial 
plexus.10,45,183,184 Both plexuses are made up of  initial and 
collecting lymphatics, with communications between the 
two.10,45,153,183 The deep plexus is situated in the peribron-
chovascular connective tissue sheaths of  the lung (see 
Fig. 1-1).10,45,153,183 Lymphatics in the deep plexus are dis-
tributed around the airways, extending peripherally to the 
respiratory bronchioles and next to branches of  the pulmo-
nary arteries and veins.10,45,153,183 The superficial plexus is 
located in the connective tissue of  the visceral pleura  
(Fig. 1-27). This plexus is prominent in the lung of  species 
with thick visceral pleura, including humans (see “The 
Pleural Space and Pleuras”).10,45,183 Lymphatics are not 
found in the alveolar walls.

Lymph is propelled centripetally toward the lung’s hilum 
or pulmonary ligament to reach regional lymph nodes. In 
the human, pulmonary lymph flows to extrapulmonary 
lymph nodes located around the primary bronchi and 
trachea.10,45,183

INNERVATION

Innervation of  the human lung consists of  sensory (affer-
ent) and motor (efferent) pathways.183,185-187 The sensory 
pathways originate in relation to the airway epithelium, 
submucosa, interalveolar septa, and smooth muscle. 
Mapping the complete distribution of  the mucosal sensory 
nerve endings has been hampered by the lack of  dependable 
morphologic methods that identify intraepithelial sensory 
axons. Ultrastructural techniques have shown that axons, 
when found, resemble known sensory endings in other 
organs (<1 µm in diameter, electron lucent, and containing 
microtubules and smooth endoplasmic reticulum).188 Fibers 
of  this pathway include myelinated, slowly adapting stretch 

Figure 1-27 Surface view of the visceral pleura. Yellow latex polymer 
(Microfil) was perfused through the bronchial artery trunk to fill the bron-
chial arteries (BA) that supply the visceral pleura. Bronchial arterioles flank 
lymphatics (arrow) that constitute the superficial lymphatic plexus of the 
lung. (Sheep whole lung, macroscopic view). 
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Figure 1-28 Unmyelinated axons (UA) known as C fibers are shown situ-
ated in the interstitium of a respiratory bronchiole, between an alveolar 
type I cell (I) lining an alveolus (A) and an initial lymphatic (L). Although 
the presence of small clear vesicles is suggestive of cholinergic (auto-
nomic) axons, unequivocal identification as either motor or sensory fibers 
is not possible in random thin sections. E, lymphatic endothelial cell. 
(Human lung surgical specimen, transmission electron microscopy.) 
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THE PLEURAL SPACE  
AND PLEURAS

As stated at the outset of  this chapter, the primary function 
of  the lung is ventilation-perfusion matching, ensuring effi-
cient gas exchange between alveolar air and alveolar capil-
lary blood. This vital function is met, in part, by extensive 
and rapid movement of  the lung within the pleural space 
and its pleural liquid.219,220 Online supplemental digital 
videos linked to this chapter provide a glimpse of  the view 
that surgeons have during dissection through the intercos-
tal muscles: the lungs glide along the deep surface of  the 
translucent endothoracic fascia and parietal pleura (see 
Videos 1-1 to 1-5). The pleural space also serves as an outlet 
into which pulmonary edema liquid can escape.221,222 The 
pleural liquid also serves to couple the lung to the chest 
wall.223 What are the anatomic features of  the pleural space 
and pleuras that contribute to these functions?

An important anatomic fact is that the pleural space is a 
real space (Fig. 1-30); it is not a potential space.2,223 The 
pleural space surrounds the lung, except at its hilum, where 
the parietal pleura and visceral pleura are contiguous.10,116 
Separations are present between the parietal and visceral 
pleuras along the interlobar fissures and costodiaphrag-
matic recesses. The normal volume of  pleural liquid is 0.1 
to 0.2 mL/kg body weight in most mammals.223,224 This spe-
cific volume is distributed across a pleural surface area of  
approximately 1000 cm2 per lung and pleural space width 
of  10 to 20 µm (see Fig. 1-30).2,223 Normally there is little 
or no contact across the pleural space because the microvilli 
that extend from the parietal and visceral mesothelial cells 
are only 3 to 5 µm long.1,2,225,226

Visceral pleural anatomy is characterized by a single 
layer of  mesothelial cells that have microvilli extending 
from their surface into the pleural space.225 However, the 
thickness of  the visceral pleura is not uniform across species 
(Fig. 1-31). Visceral pleural anatomy is characterized as 

Unfortunately, the source and function of  these axons is 
unknown. A goblet cell secretomotor role is doubtful 
because goblet cells in isolated epithelial strips do not  
secrete glycoproteins when bathed in drugs that mimic neu-
rotransmitters.200 Alternatively, a role may be the release of  
mucus by direct response to mechanical and chemical 
signals. Another effector role of  nerves in the lung is epi-
thelial ion transport, a process that is stimulated by cate-
cholamines,201 acetylcholine,202 and neuropeptides.203 This 
role is further supported by the presence of  α-adrenergic, 
β-adrenergic, and muscarinic receptors throughout the 
airway epithelium.204

Submucosal tracheal gland efferent nerve endings consist 
of  cholinergic, adrenergic, and peptidergic axonal pro-
files.205,206 Discrimination among these axonal types is par-
tially aided by their ultrastructural appearance: cholinergic 
axons have small, agranular vesicles; adrenergic axons 
have small, dense-cored vesicles; peptidergic axons have 
many large, dense-cored vesicles. One must realize, however, 
that these descriptive definitions are not absolutely 
reliable.

The lung also contains a component of  the diffuse neu-
roendocrine system called the amine uptake and decarbox-
ylation system.207,208 Despite the growing recognition that 
a diffuse neuroendocrine system is located in the lung, we 
do not understand its normal functional role, although one 
can postulate that these cells release hormones that affect 
smooth muscle.209,210 This system is composed of  single 
neuroendocrine cells and clusters of  such cells, known as 
neuroepithelial bodies, distributed along the airway epithe-
lium to the region of  alveolar ducts.211-214 The neuroepithe-
lial bodies are preferentially located at airway bifurcations. 
Pulmonary neuroendocrine cells are ultrastructurally 
characterized by dense-cored vesicles in their cytoplasm 
(Fig. 1-29). The dense-cored vesicles are considered to be 
the storage sites of  amine hormones (serotonin, dopamine, 
norepinephrine) and peptide hormones (bombesin, calcito-
nin, leu-enkephalin).215 Neurons are also associated with 
the airway epithelial and neuroendocrine cells; they appear 
to be the storage sites for vasoactive intestinal peptide215,216 
and substance P.217,218

Figure 1-29 Neuroepithelial body (NEB) located in a peripheral airway. 
Neuroepithelial bodies contain aggregates of neuroendocrine cells. A char-
acteristic ultrastructural feature of neuroendocrine cells is the presence of 
small (0.1 to 0.3 µm in diameter) dense-cored vesicles in their cytoplasm 
(arrow). Each dense-cored vesicle is bounded by a unit membrane. (Human 
lung surgical specimen, transmission electron microscopy.) 
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Figure 1-30 The pleural space is a real space. The dark band delimited 
by the opposed arrows is the pleural space, which is located between the 
chest wall and lung. (Frozen sheep chest wall and lung, unstained.) 
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from their surface.226 The thin subjacent loose areolar con-
nective tissue layer contains systemic blood vessels, lym-
phatics, and nerves. Unlike the situation with the visceral 
pleura, this thin histologic organization of  the parietal 
pleura is consistent among species, including humans (see 
Fig. 1-31).10,116,226,229,230

The unique anatomic features of  the parietal pleura are 
the lymphatic stomata.226,230-233 They are openings (≈1 to 
3 µm in diameter) between parietal mesothelial cells (Fig. 
1-32). Tracer studies revealed that India ink and chicken 
red blood cells (which are nucleated and therefore easily 
identifiable) are cleared almost exclusively from the pleural 
space by the stomata, which are located over the intercostal 
spaces in the distal half  of  the thorax, and along the 
sternum and pericardium of  experimental animals that 
have been studied.226,229 The openings are continuous with 

“thick” or “thin.”227 Species with a thick visceral pleura 
(range is 25 to 100 µm) are humans, sheep, cows, pigs, and 
horses.225 Species with a thin visceral pleura (range 5 to 
20 µm) are dogs, rabbits, rats, and mice.228 The variability 
in thickness is related to the connective tissue layer beneath 
the visceral pleural mesothelial cells. The other anatomic 
difference among species with thick or thin visceral pleura 
is their arterial blood supply. Species with a thick visceral 
pleura has an arterial blood supply from the systemic  
circulation, via bronchial arteries (see Fig. 1-27).45,183,225,227 
By comparison, species with a thin visceral pleura has an 
arterial blood supply from the pulmonary circulation. The 
reason for this striking difference in visceral pleural anatomy 
among mammals is not known.

Parietal pleural anatomy is also characterized by a single 
lining layer of  mesothelial cells with microvilli extending 

Figure 1-31 Comparative histologic features of the visceral and parietal pleuras among humans, sheep, dogs, and rabbits. The eight panels are 
shown at the same magnifications. A–D, Visceral pleura. E–H, Parietal pleura. The most obvious feature of the visceral pleura is its greater thickness (longer 
red vertical bars) in humans and sheep compared to the thinner visceral pleura of dogs and rabbits (shorter red vertical bars). The parietal pleura is thinner 
and consistently so among all the same species. Both the visceral and parietal pleuras are lined by a single layer of mesothelial cells that have microvilli 
extending from their surface into the pleural space. Subjacent to the mesothelial cell lining layer is loose areolar connective tissue. Among species with 
“thick” visceral pleura, the loose areolar connective tissue is traversed by bronchial microvessels (B), lymphatics (L), and nerves. By comparison, among 
species with “thin” visceral pleura, the loose areolar connective tissue is devoid of microvessels, other than the subjacent pulmonary microvessels at the 
perimeter of the most superficial alveoli. Lymphatics and nerves are infrequent. In the parietal pleura’s loose areolar connective tissue are systemic blood 
microvessels (B), lymphatics (L), and nerves. This histologic organization is consistent among species. (Human, sheep, dog, and rabbit lung, 2-µm-thick 
glycol methacrylate sections, light microscopy.) 
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to the thoracic duct and right lymphatic duct. In this regard, 
normal pleural liquid is cleared by mechanisms that are 
consistent with normal interstitial liquid turnover in tissues 
throughout the body.

COMPARISON OF THE LUNG OF 
MICE AND HUMANS

A point made in the previous section is that species varia-
tions are significant in visceral pleural structure and blood 
supply. This point raises a question of  what other species 
variations are found in the lung. For the purpose of  this 
chapter, comparison is made between mouse and human, 
owing to the fantastic discoveries about genetic and molec-
ular regulation of  lung biology by making mouse constructs 
to identify normal lung structure and function, as well as 
to study the impact of  disease on lung structure and func-
tion. Key structural features of  mouse and human pulmo-
nary morphology are summarized in Table 1-3.235-237 This 
table reveals that many anatomic and developmental differ-
ences are present that may be helpful to keep in mind.

In the mouse lung, in contrast to the human, the walls 
of  intrapulmonary conducting airways do not have carti-
lage, which may affect the distribution of  airway resistance 
compared to the human lung (Fig. 1-33). In addition, in the 
mouse lung, respiratory bronchioles are essentially absent, 
whereas the human lung has approximately 150,000 respi-
ratory bronchioles (see Fig. 1-33). Thus the mouse lung has 
fewer airway generations and a significantly smaller total 
surface area for gas exchange than the human lung. 
Another potential impact of  the fewer airway generations, 
as well as narrower conducting airways, is that the deposi-
tion of  inhaled particulates may have a different distribu-
tion in the lungs of  mice compared to those of  humans. 
Also, because the mouse lung has fewer airway genera-
tions, the parenchyma makes up a larger proportion of  total 
lung volume in mice (≈18%) compared to humans (≈12%).

Another notable species difference is the distribution of  
various cell types. In the upper airway of  the human lung, 
the principal secretory cells are goblet cells (see Fig. 1-13), 
whereas in the upper airway of  the mouse lung, the princi-
pal secretory epithelial cells are the club cells (Clara). Club 
cells in the human lung are found in the terminal airways 
(see Fig. 1-15). In addition, in the upper airway of  the 
human lung, additional secretory cells are mucous and 
serous epithelial cells in submucosal glands (see Figs. 1-14 
and 1-33), which are not found in the upper airway of  the 
mouse lung (see Fig. 1-33). Thus different cell types contrib-
ute to airway secretions in the two species.

Lastly, the lung’s developmental stage at full term is dif-
ferent between mice and humans. In mice, lung develop-
ment at full term is at the saccular stage. In humans, lung 
development at full term is at the beginning of  the alveolar 
stage. This timing difference is helpful to keep in mind when 
developmental comparisons are made (see also Chapter 2).

In general, those who use animal models should recog-
nize that, even in the normal setting, important differences 
in the structure, cellular composition, and development 
may affect the applicability of  findings to the human lung.

the lumen of  lymphatic capillaries. Physiologic studies 
showed that protein and particulate matter in the pleural 
space are cleared almost exclusively by the parietal pleural 
system of  stomata and lymphatics.231,234 The lymphatics 
convey the pleural liquid to regional lymph nodes along the 
sternum and vertebral column; from there, lymph is carried 

Figure 1-32 Surface view of lymphatic stomata, initial lymphatics, and 
collecting lymphatics of the parietal pleura. A and B are scanning elec-
tron micrographs that show the unique structure of lymphatic stomata (S). 
Stomata are apertures between the pleural space and the initial lymphatics 
in the parietal pleura. Three stomata are visible in a low-magnification field 
of view in A. Stomata are located over intercostal muscles. B shows a dif-
ferent stoma at a higher magnification. Microvilli are not present at the 
aperture of stomata, which are lined by mesothelial cells. C shows a portion 
of the parietal pleura where colloidal carbon is seen in four beds of initial 
lymphatics (arrows) that are located over an intercostal space. Colloidal 
carbon is also in collecting lymphatics (L) that cross a rib, where the col-
lecting lymphatics drain into lymphatic vessels that accompany the inter-
costal vessels. (Rabbit, macroscopic view of the parietal pleura after 
colloidal carbon was placed in the pleural space in situ.) 
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Figure 1-33 Comparison of lung morphologic features between adult mice (left column) and humans (right column). The four panels are the same 
magnification, as shown by the scale bar in each panel. The upper row compares 3rd-generation, intrapulmonary airways between mouse (A) and human 
(C). The mouse’s airway lumen is narrower than the same-generation airway (bronchus) in the human. Absent from the wall of the mouse’s airway wall 
are cartilage and submucosal glands (G), both of which are obvious in the wall of the bronchus of the human airway. The lower row compares terminal 
respiratory units between mouse (B) and human (D). The mouse’s terminal respiratory units do not have respiratory bronchioles; therefore terminal 
bronchioles (TB) open directly into alveolar ducts (AD). By comparison, the human’s terminal respiratory units have respiratory bronchioles (RB), which 
open into alveolar ducts (AD) and air space (AS). Brl, bronchiole; PA, pulmonary artery. (Mouse and human lung tissue, 5-µm-thick paraffin-embedded 
sections, light microscopy.) 
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Table 1-3 Comparative Anatomy of Mouse and Human Lungs

Anatomic Feature of the Lung Mouse Human

Visceral pleura thickness 5-20 µm 25-100 µm

Visceral pleura arterial supply Pulmonary Systemic (bronchial)

Lobes 4 right; 1 left 3 right; 2 left

Airway generations 13-17 17-21

Airway branching pattern Single Dichotomous

Main bronchus diameter ≈1 mm ≈10-15 mm

Intrapulmonary airway cartilage No Yes

Tracheal epithelium thickness 11-14 µm 50-100 µm

Tracheal club cells (Clara) ≈50% None

Tracheal goblet cells Absent Present

Tracheal submucosal glands Absent Present

Proximal intrapulmonary airway thickness 8-17 µm 40-50 µm

Proximal intrapulmonary airway club cells ≈60% None

Proximal intrapulmonary airway goblet cells Absent Present

Proximal intrapulmonary airway submucosal glands Absent Present

Terminal bronchiole diameter ≈10 µm ≈600 µm

Terminal bronchiole thickness ≈8 µm Not determined

Terminal bronchiole club cells ≈70% None

Respiratory bronchioles Absent (or one) Present (≈150,000)

Lung parenchyma–total lung volume ratio ≈18% ≈12%

Alveolar diameter 30-80 µm 100-200 µm

Air-blood barrier thickness ≈0.32 µm ≈0.68 µm

Pulmonary venule location Next to bronchioles Along interlobular septa

Developmental stage at full term Saccular Alveolar

Adapted from references 235–237.
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Key Readings
Albertine KH, Wiener-Kronish JP, Bastacky J, et al: No evidence for meso-

thelial cell contact across the costal pleural space of  sheep. J Appl Physiol 
70:123–134, 1991.

Bienenstock J: The lung as an immunologic organ. Annu Rev Med 35:49–
62, 1984.

Clements JA: Surface phenomena in relation to pulmonary function. Phys-
iologist 5:11–28, 1962.

■ Smooth muscle cells form circular bands around the 
airway epithelium as far peripherally as the respira-
tory bronchioles. Tone in the smooth muscle is altered 
by the autonomic nervous system and by mediators 
released from mast cells, inflammatory cells, and neu-
roendocrine cells.

■ Because smooth muscle is in the pulmonary vessels on 
both the arterial and the venous side down to precapil-
lary and postcapillary vessels, any segment can con-
tribute to active vasomotion and therefore pulmonary 
vascular resistance.

■ Normally, capillary blood volume is equal to or greater 
than stroke volume. Thus, under normal resting con-
ditions, the volume of  blood in the pulmonary capil-
laries is well below its maximal capacity. Recruitment 
can increase capillary blood volume threefold.

■ The endothelial cells of  the pulmonary circulation 
manifest a remarkable number of  metabolic activities.

■ The type II cell is the major synthesizing and secreting 
factory of  the alveolar epithelium and implements epi-
thelial repair via its ability to proliferate.

■ The clearance of  particulate matter impinging on the 
alveolar surfaces is dependent on the slow turnover 
and movement of  the alveolar surface liquid, as well 
as on the phagocytic function of  the macrophages and 
the clearance function of  the pulmonary lymphatics.

Key Points

■ The primary function of  the lung is ventilation-
perfusion matching for efficient gas exchange between 
alveolar air and alveolar capillary blood.

■ The anatomic arrangements of  the pulmonary arter-
ies beside the airways are a reminder of  the relation-
ship between perfusion and ventilation that determines 
the efficiency of  normal lung function.

■ The major physical problem of  gas exchange is the 
slowness of  oxygen diffusion through water. Thus the 
alveolar walls must be extremely thin. Because of  that 
thinness, the thickness of  the red blood cell forms a 
substantial portion of  the air-blood diffusion pathway.

■ The airways form the connection between the outside 
world and the terminal respiratory units; therefore the 
airways are of  central importance to our understand-
ing of  lung function in health and disease.

■ The terminal respiratory unit consists of  all the alveo-
lar ducts, together with their accompanying alveoli, 
that stem from the most proximal (first) respiratory 
bronchiole, and contains approximately 100 alveolar 
ducts and 2000 alveoli. The functional definition of  
the terminal respiratory unit is that, because gas-
phase diffusion is so rapid, the partial pressures of  
oxygen and carbon dioxide are uniform throughout 
the unit.
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INTRODUCTION

Multicellular life requires the use of  oxygen for the genera-
tion of  high-energy compounds (e.g., adenosine triphos-
phate) to sustain the metabolic activities of  complex 
organisms. Because multicellular organisms depend on 
oxygen, they have evolved systems for its efficient acquisi-
tion and distribution. A benchmark in the adaptation of  
vertebrates living on land was the development of  a gas 
exchange system that provided a sufficient amount of  
oxygen to meet the metabolic requirements of  cellular res-
piration. As organisms increased in size, the surface area 
required for adequate gas exchange became significantly 
larger; for example, the surface area of  the adult human 
lung epithelium has been estimated to be 70 m2.1 The 
problem of  generating such a large surface area in a con-
fined space has been solved in the basic structure of  the 
lung, where branched epithelial tubules conduct air to mil-
lions of  alveoli that lie closely apposed to the lung microvas-
culature. The epithelium lining the surface of  the lung is 
continuously exposed to biologic and chemical hazards 
from the environment, which has also necessitated the 
development of  an innate defense system in the lung. Early 
embryologic experiments established that lung morphogen-
esis is critically dependent on reciprocal interactions 
between the lung endoderm and its surrounding splanch-
nic mesoderm, which supplies progenitors of  endothelial 
cells, smooth muscle cells, mesothelial cells, and fibroblasts. 
As we will discuss, these interactions are complex and 
highly regulated in time and space. Disruptions in the  
lung developmental program, be it for genetic or epigenetic 
reasons, can lead to compromised structure and function. 
A better understanding of  the molecular mechanisms con-
trolling lung development will optimize therapeutic strate-
gies to treat the diseased or malformed lung. Several 
additional recent reviews are also available.2-6

STAGES OF LUNG DEVELOPMENT

Lung development has traditionally been divided into five 
stages that are primarily based on histologic appearance 
(Fig. 2-1). After lung bud formation the basic branching 
pattern of  the pulmonary tree and an associated vascular 
plexus is established during the embryonic and pseudo-

glandular stages. The epithelial branching program, which 
is under genetic control, is stereotyped and uses three geo-
metrically distinct local modes of  branching that proceed in 
three different sequences.7 Human lung development 
begins with the emergence of  the laryngotracheal groove 
from the floor of  the foregut endoderm during the fourth 
week of  gestation. A few days later the caudal end of  the 
primordium enlarges and bifurcates, giving rise to the left 
and right bronchial buds (see Fig. 2-1A). These buds elon-
gate caudally during the fifth week of  gestation, when a 
second round of  branching takes place, resulting in three 
secondary buds in the right lung and two in the left. These 
buds will become the primary lobes of  the left and right 
lung. A third round of  branching gives rise to bronchial 
tubules that will become the bronchopulmonary segments 
in the mature lung. Concurrent with these events in the 
distal region, the cranial portion of  the primordium gives 
rise to the trachea and larynx, which separate from the 
esophagus by the end of  this stage. The lung epithelium at 
this stage is tall columnar and shows no morphologic evi-
dence of  differentiation. At the molecular level, however, 
some aspects of  epithelial differentiation have already 
begun; for example, the most distal epithelial cells express 
messenger RNA for the lung-specific marker surfactant 
protein (SP) C.8 The lung mesenchyme, which is derived 
from splanchnic mesoderm, is loosely organized at the 
beginning of  this stage and appears to lack vascular struc-
tures. In situ hybridization studies probing for the vascular 
endothelial growth factor (VEGF) receptor FLK1 have demon-
strated, however, that vascular precursors are closely 
apposed to the distal epithelium at the time of  bud induc-
tion.9 These cells form a vascular plexus (see Fig. 2-1B) by 
a process termed “vasculogenesis,” wherein vessels are 
formed de novo by the organization of  vascular precursors. 
By the end of  the embryonic stage, pulmonary arteries and 
veins connect this plexus to the atria; the pulmonary arter-
ies and veins grow into the lung by angiogenesis, with new 
branches arising from preexisting vessels.

Dichotomous and lateral branching of  the lung epithe-
lium continues during the pseudoglandular stage, which 
lasts from week 5 to week 17 of  gestation. This results in 
the final pattern of  the pulmonary tree, which comprises 22 
to 23 generations of  bronchial tubules. Terminal bronchi-
oles branch distally to give rise to the acinar tubules and 
buds that will eventually form pulmonary acini in the adult 
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cells, the precursors of  alveolar type II cells, which are 
cuboidal columnar and contain copious amounts of  glyco-
gen. Smooth muscle cells differentiate in the mesenchyme 
and surround the epithelium perpendicular to the long axis 
of  the tubules; this proceeds in a proximal-to-distal manner. 
The pulmonary vasculature branches in parallel with the 

(see Fig. 2-1C). Morphologic differences in the epithelium 
are apparent. The proximal epithelium is initially populated 
by relatively undifferentiated columnar, glycogen-rich 
cells, but ciliated, nonciliated, goblet, mucous, basal, and 
neuroendocrine cells are identifiable by the end of  this 
stage. The distal epithelium is populated by distal epithelial 

Figure 2-1 Morphology of the stages of lung development. Mouse lungs from the indicated developmental stages were stained with an antibody 
against Nkx2-1 to identify epithelial cells in the respiratory lineage (green), an antibody against endomucin to identify vascular cells (red), and an antibody 
against α-smooth muscle actin to identify smooth muscle cells (magenta). An antibody against E-cadherin identifies the foregut endodermal epithelium 
(blue) (A). All images of sectioned lungs (C-F) are at the same magnification. A, Lung buds originate as a pair of outpocketings from the ventral foregut 
endoderm on day E9.5 in the mouse; the lung endoderm stains positive for Nkx2-1, as does the primitive thyroid rudiment (yellow arrow). B, During the 
embryonic stage, dichotomous and lateral branching of the lung epithelium continues. Vascular precursors are already present and form a plexus sur-
rounding the epithelium. C, During the pseudoglandular stage, the lung primarily consists of epithelial tubules surrounded by a relatively thick mesen-
chyme. Proximal epithelial cells show tall columnar morphologic characteristics, whereas more distal epithelial cells are cuboidal. The vasculature branches 
in parallel with the epithelium, and smooth muscle cells surrounding airways (white arrows in all panels) and vessels (white arrowheads in all panels) are 
evident. D, During the canalicular stage, epithelial acini appear, and the vasculature becomes more abundant and closely apposed to the epithelium. 
E, During the saccular stage, type I cell differentiation increases air space size. The vasculature has continued to expand, fully investing the lung paren-
chyma. Fusion of the epithelial and endothelial basal laminae brings capillaries and type I epithelial cells into close association. F, During the alveolar 
stage, the formation, lengthening, and thinning of secondary septa markedly increase the epithelial surface area. The capillaries, which until now have 
existed as a double septal network, have fused into one. (Confocal images generated by Jamie Havrilak, Graduate Program in Molecular and Developmental 
Biology, Cincinnati Children’s Hospital Medical Center.)
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often have comorbid conditions such as maternal diabetes, 
which delay maturation of  the surfactant production 
system.

Genetic mutations leading to SP-B deficiency result in a 
clinical presentation indistinguishable from the early stages 
of  RDS. Affected infants, however, are typically full term 
and have only a transient response to surfactant replace-
ment therapy, which leads to early neonatal death or the 
development of  severe neonatal chronic lung disease. The 
only definitive treatment is lung transplantation. Lethal 
respiratory failure in a mouse model of  SP-B deficiency can 
be reversed with targeted expression of  an SPB transgene, 
demonstrating the potential for gene therapy.18 Mutations 
of  SPC produce a spectrum of  pulmonary disorders during 
infancy, including interstitial pulmonary fibrosis.19 As with 
SP-B deficiency, surfactant replacement therapy has little 
or no benefit, with lung transplantation as the only docu-
mented potential cure. Other genetic defects of  the surfac-
tant production system also lead to fatal surfactant 
deficiency in the neonate. Infants deficient in ABCA3, 
which transports surfactant phospholipids to lamellar 
bodies, have normal SP-B expression but develop unex-
plained lethal respiratory failure and death within 1 month 
of  birth.20

The final stage of  lung development is the alveolar 
stage, which lasts from week 36 of  gestation through the 
first 18 months of  postnatal life. As the name implies, 
true alveoli are generated from terminal saccules during 
this stage. Interstitial tissue in primary septa is reduced, 
while secondary septa markedly lengthen and thin (see 
Fig. 2-1F). Concomitant with these changes is the fusion 
of  the double septal capillary network into one (see  
Fig. 2-1F). This remodeling requires an initial burst of  
interstitial fibroblast proliferation, which subsequently 
slows down, and the cells synthesize increased amounts 
of  collagen and elastin. Septation results in a marked 
increase in the number of  alveoli from approximately 30 
million at term to 300 million in the adult. Increased 
numbers of  type II and type I cells accompany alveolar 
expansion, with type I cells now covering 95% of  the 
alveolar surface area.21

BPD, which is typically restricted to infants born before 
32 weeks’ gestation, represents a particularly challenging 
complication.21a The condition is only associated with 
preterm birth and is defined by a characteristic appearance 
on chest radiograph and persistent requirement for supple-
mental oxygen beyond 36 weeks after conception.22 In the 
era of  surfactant replacement therapy, BPD is distinguished 
by alveolar simplification due to the apparent arrest of  the 
alveolarization during the third trimester.23 Compromised 
oxygenation and ventilation may worsen as infant somatic 
growth progresses and attendant metabolic demands out-
strip pulmonary function. Respiratory morbidity is not 
restricted to infants born before 32 weeks’ gestation. Late-
preterm infants born between 32 and 37 weeks’ gestation 
are more likely than term infants to require respiratory 
support, including positive-pressure ventilation, after 
birth.24 Given the dramatic increase in alveolar number 
during the late third trimester, it follows that late-preterm 
infants may have a smaller margin of  safety when making 
the transition to extrauterine life.

airway epithelium (see Fig. 2-1C), and pulmonary lymphat-
ics initiate as buds from the veins.10

Patterning of  the pulmonary tree is completed at the 
beginning of  the canalicular stage (16 weeks to 26 weeks; 
see Fig. 2-1D), and the cells constituting the proximal epi-
thelium continue to differentiate as ciliated, nonciliated, 
and secretory cells. Among the latter are club cells (Clara), 
identifiable by the presence of  the cell-specific club cell secre-
tory protein (Clara) (CCSP). Acinar tubules and buds, which 
are lined by cuboidal epithelial cells, expand and differenti-
ate to form pulmonary acini consisting of  respiratory bron-
chioles, alveolar ducts, and alveoli. Nascent type II cells 
containing increasing amounts of  surfactant-associated 
proteins and phospholipids become prominent in the distal 
epithelium. Differentiation of  squamous type I cells from 
type II cells begins. A dramatic expansion of  the pulmonary 
capillary bed (vascular canals) in the lung parenchyma 
gives this stage its name (see Fig. 2-1D). These vessels sur-
round the developing acini and come in direct contact with 
the epithelium, giving rise to the primordial air-blood 
barrier.

During the saccular stage, which persists from week 
24 until term, the terminal acinar tubules in the lung 
periphery continue to branch and air space size increases. 
Alveolar type II cells undergo significant maturation, as 
evidenced by increased synthesis of  SP-A, SP-B, SP-C,11 and 
SP-D12 and of  surfactant phospholipids.13 Glycogen stores, 
which serve as a substrate for phospholipid synthesis,14 
decrease, while the number of  lamellar bodies increases. 
Squamous type I cells continue to differentiate and consti-
tute an increased proportion of  the distal lung surface, 
thereby increasing the effective area for gas exchange (see 
Fig. 2-1E). Septal walls consist of  a central connective 
tissue core with a capillary network on each side. Subse-
quent fusion of  the basal laminae of  the distal epithelium 
and endothelium brings capillaries into close association 
with type I cells, which decreases the diffusion distance 
between air spaces and capillaries to allow more efficient 
gas exchange (see Fig. 2-1E).

The transition from the canalicular to saccular stage of  
lung development marks the threshold of  viability for 
preterm infants who have access to neonatal intensive care 
support.15,16 Before 22 weeks’ gestation there is insufficient 
surface area in the distal pulmonary tree to support safe, 
reliable oxygenation and ventilation, even when surfactant 
replacement therapy and sophisticated mechanical ventila-
tion techniques are available. Survival at 23 weeks’ gesta-
tion ranges from 15% to 30%. Mortality decreases with 
each additional week of  gestation; by 25 weeks, survival 
exceeds 60%, although significant morbidity in the form of  
bronchopulmonary dysplasia (BPD) and neurodevelopmental 
compromise persists.17

As the threshold of  viability is crossed, respiratory distress 
syndrome (RDS) becomes the primary source of  morbidity 
and mortality for the preterm infant. RDS is a consequence 
of  deficient surfactant production, leading to terminal 
airway atelectasis and epithelial injury. The subsequent 
capillary leak produces the hyaline membranes that are 
classically associated with this disease. Surfactant replace-
ment therapy has dramatically improved RDS survival 
rates and reduced morbidity. Term infants affected by RDS 
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TISSUE INTERACTIONS AND  
LUNG DEVELOPMENT

A basic tenet of  lung development is that it requires induc-
tive interactions between the endodermal epithelium and 
the mesodermal mesenchyme. Reciprocal inductive inter-
actions involve one cell type signaling to another cell type 
and then responding to signals sent back; both cell types 
are thus signaling and responding to each other. This is 
particularly evident in the embryonic and pseudoglandular 
stages, where it has been shown conclusively that lung 
epithelium must be associated with lung mesenchyme in 
order to survive25 and branch.26 The factors that drive 
branching morphogenesis are diffusible, because embry-
onic lung epithelium branches when separated from lung 
mesenchyme by a filter that prevents direct cell-cell contact 
but allows diffusion of  soluble factors.27 Importantly, these 
experiments also showed that survival of  lung mesen-
chyme is dependent on the presence of  lung epithelium, 
underscoring that induction is reciprocal. The fate of  the 
entire respiratory endoderm, from the trachea to the bud 
tips, however, is not fully committed during the embryonic 
stage. Reciprocal recombination experiments have shown 
that distal lung mesoderm can reprogram tracheal endo-
derm to branch and differentiate like lung,28,29 and that 
tracheal mesoderm can reprogram lung endoderm to dif-
ferentiate like trachea.30,31

Bronchopulmonary sequestration may represent an 
intriguing manifestation of  aberrant pulmonary endoderm-
mesoderm interaction. These masses of  abnormal lung 
tissue, which may be contained within the lung or in  
an extrapulmonary location within the abdomen, may  
be in direct communication with gastrointestinal tract 
structures, suggesting ectopic induction of  embryonic 
foregut. The histopathologic appearance of  these lesions 
includes typical cellular components of  pulmonary paren-
chyma along with inflammatory and fibrotic components 
(Fig. 2-2C).32

Normal lung function requires the precise alignment of  
the distal epithelium and the vasculature to meet the 

Figure 2-2 Histopathologic features of human alveolar capillary dys-
plasia and extralobar pulmonary sequestration. A, Section of normal 
infant lung stained with hematoxylin and eosin demonstrates a typical 
bronchovascular bundle incorporating a small bronchus (Br) and artery (A), 
without an accompanying vein. A typical alveolar network with abundant 
air spaces (asterisk) is present. B, Pentachrome-stained section from a full-
term newborn with alveolar capillary dysplasia. There is abundant mesen-
chyme separating rudimentary, dysplastic terminal air spaces (asterisk). 
Alveolar capillaries (arrow) are sparse in number and distended. There is 
misalignment of the pulmonary vasculature. A pulmonary artery (A) and 
prominent muscularis and bronchus (Br) are accompanied by an anoma-
lous pulmonary vein (V). The paucity of alveolar capillary structures 
accounts for the profound pulmonary hypertension in these patients. (×10 
original magnification.) C, Immunohistochemistry of extralobar pulmonary 
sequestration from a full-term neonate demonstrates expression of pro-
surfactant protein C in the epithelium (brown-staining cells). The sequestra-
tion has the histologic appearance of primitive lung at the canalicular stage 
of development with an abundance of mesenchyme separating nascent 
air space structures (arrow). (Micrographs courtesy of Dr. Susan Wert, Division 
of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, and  
Dr. Gail Deutsch, Division of Pathology, Seattle Children’s Hospital.)
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ablation of  both has no effect on lung development. FGF10 
is an ideal candidate for mediating tissue interactions in the 
lung, because it is expressed in the mesenchyme, whereas 
its primary receptor, FGFR2b, is expressed by epithelial cells. 
Ablation of  either FGF1038 or FGFR2b39 results in complete 
pulmonary agenesis caudal to the trachea. The basis for this 
phenotype comes from the ability of  FGF10 to induce lung 
epithelial budding by chemoattraction40,41; in the absence 
of  FGF10, primary buds cannot form. FGF10 affects the 
expression of  many target genes in early lung epithelium,42 
including other important signaling molecules such as  
bone morphogenetic protein 4 (BMP4)40 and Notch family 
members.43

Like FGF10, FGF9 acts as a mediator of  reciprocal tissue 
interactions, because it is expressed in the epithelium and 
mesothelium, whereas its receptor (FGFR2c) is found in the 
mesenchyme. FGF9 controls lung mesenchyme size by reg-
ulating cell proliferation.44 The observation that the amount 
of  available mesenchyme appears to control lung branch-
ing25 is consistent with the finding that the lungs of  Fgf9-
null mice are severely hypoplastic, with decreased amounts 
of  mesenchyme and reduced Fgf10 expression.45 The obser-
vation that Fgf18-null mice exhibit reduced alveolar size 
resulting from reduced cell proliferation during the saccular 
stage46 suggests a role for FGF18 in late lung development. 
FGF7 has been shown to stimulate lung epithelial cell pro-
liferation,47 as well as surfactant protein gene expression 
and surfactant phospholipid synthesis in type II cells.48,49 
Transgenic overexpression of  Fgf7 in the developing mouse 
lung epithelium results in lesions resembling congenital 
cystic adenomatoid malformations50; examination of  
human congenital cystic adenomatoid malformations, 
however, shows that FGF7 expression is actually decreased 
and FGF10 expression is unchanged.51 Although intraperi-
toneal injection of  neutralizing antibodies against Fgf7 
inhibits postnatal lung growth and alveolus formation,52 
mice with a targeted deletion of  Fgf7 have no apparent lung 
phenotype.53 Other FGFs are also required during alveolo-
genesis, because mice with deletions of  both Fgfr3 and Fgfr4 
fail to form normal alveoli.54

The Sprouty (SPRY) proteins, which antagonize FGFR 
signaling, modulate the effects of  FGFs in the developing 
lung. Although single deletion of  either Spry2 or Spry4 has 
no effect on lung development, mice null for both genes 
have defects in multiple organs, including the lung.55

Retinoic Acid

Retinoic acid (RA), the active derivative of  vitamin A, is 
essential for the normal development of  many tissues, 
including the lung. Maternal vitamin A deficiency results 
in severe respiratory phenotypes in offspring, including tra-
cheoesophageal fistula, lung hypoplasia, and lung agene-
sis.56 RA signals through RAR and RXR nuclear receptors, 
both of  which have α, β, and γ isoforms, and these are 
expressed in the lung from the outset of  development. Mice 
with double deletions of  Rara/Rarb or Rara/Rxrb show the 
same lung abnormalities as those seen in vitamin A–
deficient embryos.57 The mechanism by which RA controls 
lung morphogenesis is not fully resolved. Data from cul-
tured early embryonic foreguts suggest that RA allows acti-
vation of  Wingless (Wnt) signaling by inhibiting Dickkopf1 
(DKK1); this affects FGF10 expression in the mesoderm, as 

respiratory requirements of  the developing organism. 
Certain lethal congenital malformations of  the lung, such 
as alveolar capillary dysplasia with misalignment of  pulmonary 
veins (ACD/MPV), are due to a perturbation in the relation-
ship between vascular and airway development. ACD/MPV 
is characterized by a paucity of  alveolar capillaries, thick-
ened pulmonary mesenchyme, and misalignment of  the 
pulmonary veins, which reflect the reciprocal relationship 
required for airway and vascular development (see Fig. 
2-2B). ACD/MPV is associated with mutations in the tran-
scription factor FOXF1, which is expressed in the lung mes-
enchyme.33 The alveolar simplification of  BPD is also 
accompanied by a relative paucity of  alveolar capillaries 
that is reminiscent of  ACD/MPV. Evidence that vascular 
endothelial growth factor A (VEGF-A), which is produced by 
lung epithelial cells, can reverse the alveolar defect further 
reinforces the concept of  interdependent development of  
vascular and airway structures.34

MOLECULAR REGULATION OF 
LUNG DEVELOPMENT

Elucidation of  the factors that regulate lung growth and 
development has been the focus of  an intense research 
effort.34a This stems not only from a desire to understand the 
basis of  pulmonary pathologic conditions present at birth, 
but also from the possibility that understanding how the 
lung develops will provide insight into how the lung repairs 
itself  following injury or disease. Given the morphogenetic 
precision required to generate a lung that can function 
effectively in gas exchange, coupled with the fact that the 
lung contains over 40 differentiated cell types,1 it is not 
surprising that the molecular regulation of  lung develop-
ment is proving to be very complex. Identifying the factors 
involved provides only part of  the story. When, where, how 
much of, and for how long these factors are expressed must 
also be considered. The fact that there is crosstalk between 
some of  the identified pathways significantly increases the 
level of  complexity.

DIFFUSIBLE MEDIATORS OF  
LUNG DEVELOPMENT

Fibroblast Growth Factors and Fibroblast Growth 
Factor Receptors

In both humans and mice, the fibroblast growth factor (FGF) 
family comprises 22 structurally related molecules35; 
among these, FGF1, 2, 7, 9, 10, and 18 have been localized 
to the developing lung. FGFs bind and signal through high-
affinity, ligand-dependent transmembrane receptors (fibro-
blast growth factor receptors [FGFRs]) that contain an 
intracellular tyrosine kinase domain. There are four FGFRs, 
all of  which are expressed in the lung. Alternative messen-
ger RNA splicing results in two isoforms each for FGFR1, 
FGFR2, and FGFR3 that have distinct ligand specificities.36 
FGFR activation is modulated by heparin or heparan 
sulfate.37

FGF1 and FGF2 are not critical for lung development, 
because the single deletion of  either gene or the double 
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proteins.78 Inhibition of  TGF-βrII in cultured embryonic 
lungs increases lung branching,79 as does attenuation of  
SMAD2/3,80 underscoring the inhibitory nature of  TGF-β1 
on lung morphogenesis. Tgfb1-null mice show no apparent 
lung phenotype, although it should be noted that 50% of  
these mice die on E10.5, just after the onset of  lung develop-
ment.81 Most Tgfb2-null mice die shortly before or during 
birth with a wide range of  developmental defects. The lungs 
of  neonates have dilated conducting airways and collapsed 
terminal and respiratory bronchioles.82 Deletion of  Tgfb3 
results in retarded development and differentiation of  the 
lung epithelium, mesenchyme, and vasculature.83 The fact 
that TGF-β3 appears to promote morphogenesis contrasts 
with the inhibitory function of  TGF-β1, suggesting that 
these ligands affect distinct aspects of  lung development.

Of  the four BMPs expressed in the developing lung 
(BMP3, 4, 5, and 7), BMP4 has been the focus of  the most 
studies. Bmp4 is expressed in the ventral foregut mesen-
chyme before lung bud induction and then is expressed in 
the distal epithelium and proximal mesenchyme after the 
lung has formed. In the mouse, epithelial expression declines 
in the distal epithelium before birth but begins in the capil-
lary endothelium. Bmp4 expression is up-regulated by Fgfs 
in the epithelium and by Shh in the mesenchyme. Specific 
deletion of  Bmp4 or BMP receptor 1a (Bmpr1a) from the 
distal lung epithelium results in reduced proliferation, 
increased apoptosis, and cystic morphogenesis.84 Early 
endodermal deletion of  both Bmpr1a and Bmpr1b results in 
reduced ventral Nkx2.1 expression, which is replaced by 
expanded expression of  dorsal Sox2.85 These data support a 
model in which BMP4 promotes the proliferation and sur-
vival of  undifferentiated lung progenitor cells.

Wnts and β-Catenin

Members of  the Wnt family of  secreted glycoproteins are 
critically involved in cell fate determination, proliferation, 
survival, and motility in organogenesis.86 Wnt ligands bind 
their receptors to activate a pathway that ultimately stabi-
lizes β-catenin, which then interacts with nuclear T-cell 
factor/lymphoid enhancer factor (TCF-LEF) transcription 
factors to modulate transcription of  downstream target 
genes.87 Wnts1, 2, 2b, 5a, 7b, and 11 are expressed in the 
lung. Their secretion is mediated by the transmembrane 
protein Wntless (WLS); deletion of  WLS from the lung 
endoderm disrupts branching morphogenesis and pulmo-
nary endothelial differentiation.88 Canonical Wnt signaling 
plays a critical role in lung development, because endoder-
mal deletion of  β-catenin abrogates specification of  lung 
progenitors and leads to complete lung agenesis.89 The 
ligands responsible for lung progenitor specification are 
likely Wnt2/2b, because their dual deletion phenocopies 
exactly the endodermal loss of  β-catenin.90 Proximal-distal 
airway patterning and epithelial cell differentiation are dis-
rupted when Wnt signaling is inhibited after specification 
of  lung progenitors, either by targeted epithelial deletion  
of  β-catenin91 or by misexpression of  the Wnt antagonist 
Dkk1.92 In addition to its role in specifying lung endoderm, 
Wnt2 also activates a signaling network necessary for 
smooth muscle differentiation.93 Inactivation of  Wnt5a 
results in a foreshortened trachea, distended distal airways, 
and retarded lung maturation.94 Mice null for Wnt7b die at 
birth from respiratory failure. Early proliferation is reduced 

well as maintenance of  lung progenitor cell fate.58 RA 
further affects lung bud induction by inhibiting transform-
ing growth factor-β (TGF-β) activity in the prospective lung 
field, which in turn allows expression of  FGF10.59

RA also enhances perinatal alveolus formation in 
rodents,60 which has led to its clinical use for the prevention 
of  BPD.61 The effect is modest but significant; about 15 
infants must be treated to prevent one case of  BPD.62 The 
mechanism is not understood in detail but is likely related 
to maintenance of  alveolarization after preterm delivery, 
reducing the potential for alveolar simplification.

Sonic Hedgehog

The hedgehog signaling pathway plays an important role 
in the development of  multiple organs.63 Sonic hedgehog 
(SHH) is highly expressed in the developing lung epithe-
lium,64 and its primary receptor, patched 1 (PTCH1), is found 
in mesenchymal cells,65 suggesting that SHH is part of  an 
epithelial-mesenchymal inductive loop. Shh is initially 
expressed throughout the epithelium but becomes restricted 
to subsets of  cells from day E16.5 onward.66 Shh-null mice 
form lungs, indicating that Shh is not required for lung 
specification and bud induction; however, these lungs are 
severely hypoplastic,67 suggesting that Shh is involved in 
regulating branching morphogenesis. Shh deletion pro-
foundly affects lung growth and patterning, but the speci-
fication of  epithelial cell types appears to be unaffected.68 
Because Shh serves as a survival factor for lung mesenchy-
mal cells,69 the lung hypoplasia seen in Shh-null embryos 
may be due to a decrease in mesenchymal mass. Shh is also 
a negative regulator of  Fgf10, and Shh-null embryos exhibit 
expanded Fgf10 expression.68 A clinical syndrome with a 
respiratory phenotype that is consistent with disruption  
of  SHH signaling is Smith-Lemli-Opitz.70 Smith-Lemli-
Opitz syndrome is phenocopied by mutations in Δ-7-
dehydrocholesterol reductase (DHCR7), which is involved 
in cholesterol synthesis71; cholesterol modification of  SHH 
is required for effective signaling.72,73

SHH levels are modulated by its binding to PTCH1.73 In 
the absence of  ligand, PTCH1 represses Smoothened (SMO) 
and prevents activation of  the hedgehog signaling pathway. 
SHH also up-regulates PTCH1 expression, and any PTCH1 
in excess of  that involved in controlling signaling binds SHH 
and sequesters it, creating a negative feedback loop that 
restricts its spread. Another molecule regulating SHH levels 
is hedgehog interacting protein (HHIP), a membrane-bound 
protein that binds all mammalian hedgehog proteins and, 
like PTCH1, is up-regulated in response to SHH.74 Targeted 
deletion of  HHIP results in lung hypoplasia75 that may be 
due to a loss of  FGF10 expression at the prospective sites of  
bud formation as a result of  increased SHH signaling.

Transforming Growth Factor-β Superfamily

The TGF-β superfamily comprises activins, inhibins, the 
BMPs, müllerian inhibiting substance, and TGF-β1, 2, and 
3. TGF-β1 treatment of  cultured embryonic lung explants76 
or misexpression of  TGF-β1 targeted to the lung in vivo77 
severely inhibits branching morphogenesis. This is likely 
due to the ability of  TGF-β1 to inhibit FGF10 expression.59 
TGF-β1 signals through a heteromeric complex of  type I 
(TGF-βrI) and type II (TGF-βrII) receptors and exerts its 
effects on downstream target genes via the Smad family of  
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surfactant phospholipid biosynthesis.105 Targeted disrup-
tion of  the glucocorticoid receptor in mice leads to respira-
tory distress and early neonatal death106; the lungs of  these 
animals are atelectatic with blunted alveolarization. 
Although the number of  type II cells is increased by 30%, 
the relative expression of  Sp-a and Sp-c is decreased by 50%. 
The number of  type I cells is decreased by 50%, as are the 
type I cell markers T1α and aquaporin-5, suggesting that 
glucocorticoids facilitate the differentiation of  type II cells 
into type I cells.107 Somewhat paradoxically, however, mice 
null for corticotropin-releasing hormone show deficits in 
septal thinning, air space formation, and content of  Sp-a 
and Sp-b but have no deficit in surfactant phospholipid 
biosynthesis.108

Given the broad distribution of  pulmonary glucocorti-
coid receptors in the developing lung, it is not surprising 
that the therapeutic effects of  glucocorticoid treatment are 
complex. Clinical experience suggests that glucocorticoids 
have contrasting biologic effects depending upon whether 
treatment is directed toward the fetal lung or the preterm 
neonatal lung. Women in preterm labor are routinely 
treated with glucocorticoids to reduce the incidence and 
severity of  neonatal RDS.109 Antenatal steroid treatment 
accelerates fetal lung maturation by inducing mesenchy-
mal thinning and enhancing pulmonary function, pre-
sumably through stimulation of  surfactant production. 
Morphometric studies in sheep suggest that antenatal 
steroid treatment may also induce some blunting of  alveo-
larization.110 Glucocorticoid treatment has also been 
employed to treat preterm infants experiencing severe BPD. 
Although early studies and anecdotal reports suggested 
that steroid treatment could reverse the fibrosis and scar-
ring associated with BPD and significantly improve pulmo-
nary mechanics,111 subsequent studies demonstrated no 
clear improvement in long-term pulmonary outcome and 
increased risk for neurodevelopmental impairment.112

TRANSCRIPTIONAL REGULATION OF  
LUNG DEVELOPMENT

The diffusible molecules mediating tissue interactions in the 
developing lung initiate signaling cascades that lead to 
changes in gene expression. The diversity of  cell types found 
in the lung, which all differentiate under tight spatial and 
temporal control, makes regulation of  gene expression by 
transcription factors in the developing lung highly complex. 
Although no lung-specific transcription factors have yet 
been found, research over the last decade has identified 
several transcription factors in addition to those described 
earlier that are crucial to normal lung development.

NKX2-1

NKX2-1 (also known as “thyroid transcription factor 1” 
[TTF1]) is found in the presumptive respiratory region of  
the foregut endodermal epithelium before lung bud induc-
tion. NKX2-1 is expressed in the forebrain, thyroid, and 
lung, where it interacts with multiple partners to influence 
several key aspects of  development.113 Mice null for Nkx2-1 
develop tracheoesophageal fistulas, with main-stem bronchi 
connecting to hypoplastic, cystic lungs.114 Whereas differ-
entiation of  the most proximal epithelium is somewhat pre-
served in Nkx2-1–null lungs, markers of  distal epithelial 

in both epithelial and mesenchymal tissue compartments, 
leading to lung hypoplasia, although cell fate specification 
and overall tissue architecture are unchanged.95 Constitu-
tive activation of  Wnt signaling in the developing lung epi-
thelium with hyperactive β-catenin results in lungs that 
lack fully differentiated cell types and instead contain mul-
tiple intestinal and nonlung secretory cell types.96 Taken 
together, these observations indicate that the temporospa-
tial regulation of  Wnt signaling must be tightly regulated 
to ensure normal lung morphogenesis and differentiation.

Platelet-Derived Growth Factor

The platelet-derived growth factor (PDGF) family consists of  
five different disulphide-linked dimers built up of  four differ-
ent polypeptide chains encoded by four different genes. 
PDGF-A, which homodimerizes with itself  or heterodimer-
izes with PDGF-B, plays an important role in lung develop-
ment. PDGF-A is expressed in distal lung epithelium, whereas 
its receptor, PDGFRA, is expressed in nearby mesenchymal 
cells, indicative of  a paracrine signaling loop between the 
epithelium and mesenchyme. Deletion of  PDGF-A results in 
arrested alveolus formation and postnatal death.97 The 
lungs lack the differentiated alveolar myofibroblasts that 
produce elastin, which is critical for alveolus formation.

Vascular Endothelial Growth Factor

VEGF-A, C, and D are all found in the lung. The temporal 
and spatial expression of  VEGF-A during lung development 
implies a central role in the maturation and organization of  
the pulmonary vascular network. VEGF-A is expressed in 
epithelial and mesenchymal compartments during the 
embryonic and pseudoglandular stages, becoming more 
restricted to the epithelium as development progresses into 
the canalicular stage.9,98 VEGF-A exists as three isoforms 
(120, 164, and 188) that have distinct functions in vascu-
lar development.99 Genetic studies in mice demonstrate the 
importance of  local tissue concentrations of  Vegf-a to effect 
appropriate vascular development and distal airway struc-
tures. Increased expression of  Vegf164 in distal epithelium 
disrupts assembly of  the vascular plexus and arrests airway 
branching without affecting endothelial cell proliferation or 
survival, indicating that crosstalk between the developing 
epithelium and vasculature is required for normal morpho-
genesis.100 Vascular ablation in the early lung causes signifi-
cant alterations in stereotypic branching of  the epithelium.101 
VEGF-A expression is controlled by multiple mediators, 
such as FGFs and SHH.102

Glucocorticoids

Glucocorticoids exert potent effects on a variety of  different 
tissues, with a common theme that they induce the preco-
cious appearance of  normal developmental events. The 
effects of  glucocorticoids on lung function have been a topic 
of  intense interest since the observation that dexametha-
sone accelerates lung maturation in premature lambs.103 
Glucocorticoid receptors are present on the developing pul-
monary epithelium as airway branching progresses during 
the pseudoglandular stage of  lung development. Epithelial 
expression persists through the saccular and alveolar 
stages, accompanied by the onset of  expression within the 
mesenchymal compartment.104 Exogenous glucocorticoids 
stimulate morphologic maturation and many aspects of  
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gene have been directly linked to this disorder. FOXP1  
and FOXP2, which are known transcriptional repressors, 
are expressed in the lung epithelium; both genes are 
expressed distally, but only FOXP1 is expressed proximally. 
Foxp2-/- mice show impaired alveolarization, an effect exac-
erbated in compound mutant Foxp2-/-, Foxp1+/- mice, which 
have hypoplastic lungs and die at birth. Foxp1 acts coop-
eratively with Foxp4 to restrict goblet cell specification, 
thereby regulating the balance of  cell types in the airway 
epithelium.129

GATA6

GATA6, a zinc finger transcription factor that is required 
for visceral endoderm differentiation,130 is the only GATA 
family member expressed in the distal epithelium of  the 
developing lung. Mice bearing a dominant-negative Gata6/
engrailed fusion protein under control of  the Sftpc pro-
moter show reduced numbers of  proximal airway tubules. 
Lung epithelial cell differentiation is also affected, with 
these mice completely lacking detectable alveolar type I 
cells.131 Loss of  Gata6 in the lung epithelium causes a loss 
of  differentiation and the precocious appearance of  bron-
chioalveolar stem cells that is the result of  increased Wnt 
signaling.132 GATA6 regulates expression of  WNT7B and 
also interacts with NKX2-1 to control expression of  SP-A,  
B, and C.113

SOX Family

Members of  the SOX family of  transcription factors func-
tion as key regulators of  cell fate and differentiation. Of  the 
20 known SOX proteins, SOX2, 4, 9, 11, and 17 are found 
in the developing lung. Sox2 is highly expressed in non-
branching epithelium but repressed by Fgf10 in epithelial 
cells that are actively invading the surrounding mesen-
chyme,133 suggesting that silencing of  Sox2 is required for 
the epithelium to branch. The repression of  Sox2 by Fgf10 
may be mediated by BMP signaling.85 Overexpression of  
Sox2 in lung epithelial cells inhibits lung branching by 
forcing the cells to commit prematurely to a differentiation 
program, thereby rendering the cells incompetent to 
respond to branching signals.134 Sox11 is also expressed 
throughout the developing lung epithelium, and mice null 
for Sox11 have significant lung hypoplasia.135 Sox17 expres-
sion in the lung is dynamic, being first detected in the mes-
enchyme during the embryonic stage, then in the conducting 
airway epithelium during the canalicular stage. Because its 
misexpression in the distal epithelium disrupts branching 
and causes the ectopic expression of  proximal airway 
markers, Sox17 is thought to play a key role in specifying 
differentiation of  airway epithelial cells.136

POSTTRANSCRIPTIONAL GENE REGULATION IN 
LUNG DEVELOPMENT

Micro-RNAs (miRNAs) are small noncoding RNA molecules 
that modulate physiologic and pathologic processes by 
inhibiting gene expression through RNA translation repres-
sion or messenger RNA degradation. Functionally mature 
miRNAs are generated by a series of  ribonuclease III cleav-
age steps. Key enzymes in miRNA biogenesis include 
DROSHA, which cleaves primary miRNAs into precursor 
miRNAs in the nucleus, and DICER1, which cleaves precur-

differentiation, including the surfactant proteins, are com-
pletely lacking. Haploinsufficiency for the NKX2-1 gene in 
humans leads to brain-lung-thyroid syndrome, which is 
characterized by benign hereditary chorea, respiratory 
disease, and congenital hypothyroidism.115-118 The respira-
tory phenotypes include RDS at birth, as well as recurrent 
pulmonary infections and interstitial lung disease later  
in childhood. The control of  NKX2-1 expression in lung 
development is not fully understood.

GLI Genes

Three GLI genes (1, 2, and 3) code for zinc finger transcrip-
tion factors that are the principal effectors of  hedgehog sig-
naling. All three Gli genes are expressed in distinct but 
overlapping domains in lung mesenchyme, with expression 
being highest in the distal tips.119,120 The analysis of  com-
pound mutant mice has demonstrated the complexity of  
how Gli genes affect lung development. Embryos express-
ing different combinations of  Gli genes show a range of  
lung defects, the most striking of  which is the absence of  
lungs, trachea, and esophagus in Gli2-/-, Gli3-/- compound 
mutants.121 The presence of  a single Gli3 allele (Gli2-/-, 
Gli3+/-) is sufficient to allow formation of  hypoplastic lungs 
in which the left and right lungs do not separate, and the 
embryos have tracheoesophageal fistulas. The phenotype 
seen in Gli2/Gli3 double-null embryos is more severe than 
that seen in Shh-null animals; this suggests that the GLI 
genes may lie downstream in signaling pathways other 
than SHH, or that the other hedgehog proteins (Indian and 
desert) may be active in the lung. Mutations in the human 
GLI3 gene cause Pallister-Hall and Greig syndromes, which 
affect development of  several organ systems, including the 
lung.122

FOX Family

The FOX family of  transcription factors contains more than 
50 members, all of  which share a winged-helix DNA binding 
domain. FOXA1 and FOXA2 are closely related proteins 
found in the foregut endoderm and its derivatives. Their 
spatial and temporal expression patterns are similar in the 
lung. Mice lacking Foxa2 do not form endoderm and hence 
cannot form lungs123; targeted deletion of  Foxa2 in lung 
epithelial cells, however, demonstrates that it is required for 
alveolarization and epithelial cell differentiation.124 Dele-
tion of  Foxa1 in mice delays some aspects of  sacculation 
and alveolarization prenatally and perinatally, but these dif-
ferences normalize by 2 weeks of  age,125 suggesting com-
pensation by Foxa2. Deletion of  both genes inhibits cell 
proliferation, branching morphogenesis, and epithelial cell 
differentiation,126 indicating that FOXA1/2 play a central 
role in lung development.

Foxa1 is expressed in lung mesenchyme and controls 
genes involved in epithelial-mesenchymal interactions, 
because a haploinsufficiency results in defective branching, 
lobation, and epithelial differentiation in the mouse lung.127 
In humans, FOXF1 mutations are associated with ACD/
MPV.33 Foxj1 controls expression of  left-right dynein, 
which is required for correct anchoring of  basal bodies; 
deletion of  Foxj1 causes situs inversus, the loss of  motile 
cilia in airway epithelial cells, sinusitis, and bronchiecta-
sis.128 Although these features are associated with Karta-
gener syndrome in humans, no mutations in the FOXJ1 



PART 1 • Scientific Principles of Respiratory Medicine30

riers with DICER1 mutations are phenotypically normal, 
suggesting that loss of  one DICER1 allele is compatible with 
normal development and insufficient for tumor formation. 
PPB is composed of  both epithelial and mesenchymal 
cells.151,152 In a subset of  patients, overgrowth of  the mesen-
chymal cells results in a sarcoma that is associated with a 
poorer prognosis. Interestingly, the protein DICER1was 
found to be lost in the epithelial tumor component but 
retained in the mesenchymal cells by immunohistochemis-
try, suggesting that loss of  DICER1 specifically in the lung 
epithelium promotes PPB formation.150 Consistent with this 
notion, Dicer1 gene ablation targeted to the developing 
murine pulmonary epithelium results in a PPB-like pheno-
type (Fig. 2-3). Because PPB often arises in the setting of  an 
inherited tumor predisposition syndrome characterized by 
increased incidence of  other neoplasms, including cystic 
nephroma, ovarian sex cord–stromal tumor, embryonal 
rhabdomyosarcoma, and multinodular goiter, the DICER1/
miRNA pathway functions that control lung development 
are probably also operative in other organs.153-155

Key Points

■ The lung epithelium begins as two buds from foregut 
endoderm. Subsequent branching morphogenesis and 
alveolarization leads to a mature organ containing 
over 300 million alveoli.

■ The pulmonary vasculature develops in parallel with 
the branching epithelium.

■ Lung development requires reciprocal interactions 
between the epithelium and mesenchyme derived from 
splanchnic mesoderm.

■ Tissue interactions are mediated by an array of  diffus-
ible signaling molecules. Variations in the temporal 
and spatial expression of  these mediators add com-
plexity to these interactions.

■ Diverse classes of  transcription factors that lie down-
stream of  diffusible mediators further regulate mor-
phogenesis and effect the differentiation of  individual 
cell types.

sor miRNAs to the mature form in the cytoplasm. Mature 
miRNAs are incorporated into the large multiprotein RNA-
induced silencing complex, which represses RNA transla-
tion or induces messenger RNA degradation. miRNAs 
regulate key biologic processes important in lung develop-
ment, including cellular proliferation, apoptosis, and dif-
ferentiation. miRNA profiling reveals that the lung has a 
specific miRNA expression profile that is conserved across 
species (including mouse and human) and regulated spe-
cific to developmental stage, sex, and cell type.137-140 
miRNAs have a critical role in controlling organogenesis. 
Loss- and gain-of-function studies, as well as differing 
expression profiles between patients or animal models with 
lung disease and normal controls, implicate miRNAs in the 
pathogenesis of  many lung diseases, including chronic 
obstructive pulmonary disease, lung cancer, pulmonary 
inflammatory disease, idiopathic pulmonary fibrosis, 
asthma, and cystic fibrosis (for reviews see references 141 
to 144). Additionally, studies in model systems have identi-
fied a critical role for miRNA-mediated regulation in lung 
development. Inactivation of  Dicer1, a key enzyme in 
miRNA biogenesis, targeted to the developing lung epithe-
lium results in neonatal death because of  arrested airway-
branching morphogenesis, increased cell death, and altered 
expression of  critical epithelial-mesenchymal signaling 
molecules.145 Specific miRNAs that have been identified to 
influence lung development include the miR302/367 
cluster that directs lung endoderm development by coordi-
nating proliferation, differentiation, and apical-basal polar-
ity of  lung progenitor cells,146 the miR17-92 cluster that is 
required for lung growth as well as for promoting prolifera-
tion and inhibiting differentiation of  lung epithelial pro-
genitor cells,147,148 miR127, which regulates terminal bud 
size and number,149 and miR221 and miR130a, which 
have opposing effects on airway and vascular morphogen-
esis.137 The recent discovery of  heterozygous germline loss-
of-function DICER1 mutations in familial pleuropulmonary 
blastoma (PPB), a rare pediatric lung tumor that often arises 
during lung development, provides evidence that the 
DICER1/miRNA pathway controls human lung develop-
ment and suppresses tumorigenesis.150 The majority of  car-
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Figure 2-3 Mouse lungs with Dicer1 loss mimic pleuropulmonary blastoma (PPB) in neonates. Human PPB (B and C), adjacent normal neonatal lung 
(A), Dicer1-deficient mouse embryonic day 18.5 lungs (E and F), and normal lungs from Dicer1-proficient littermates (D) were compared by hematoxylin 
and eosin staining. PPB and Dicer1-deficient murine lung sections were also immunostained for the type I cell marker, T1α (C and F), to determine the 
phenotype of the epithelial cells lining the cysts. A and D, The neonatal human lung adjacent to the tumor shows normal morphologic characteristics for 
the alveolar stage of lung development, and the mouse lung shows morphologic characteristics typical of the saccular stage of development. B, Early-stage 
type I PPB is characterized by epithelium-lined cysts with intervening septa containing mesenchymal cells. E, The Dicer1-deficient mouse lungs have 
morphologic characteristics similar to those of human PPB, including epithelium-lined cysts separated by septa containing mesenchymal cells. Many of 
the epithelial cells lining the PPB cysts have a type I cell phenotype as determined by expression of T1α (C). Similarly, the Dicer1-deficient epithelial cells 
lining the cysts in the murine model also express T1α (F). (A and B, ×4 original magnification; C, ×20 original magnification; D and E, ×10 original magni-
fication; F, ×40 original magnification.) 
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INTRODUCTION

The human genome comprises approximately 3.2 billion 
base pairs. With the exception of  identical twins, each 
human being has a unique DNA sequence. There are at least 
10 million locations in the genome where DNA sequence 
varies between individuals. These locations are referred to 
as “polymorphic” when at least two variants (also known 
as “alleles”) are present at a frequency greater than 1%. 
Most human diseases are the result of  the interplay between 
these genetic polymorphisms and environmental exposures. 
The first step in any investigation of  the genetic causes of  a 
disease or phenotype is to determine the relative importance 
of  these two causes of  the disorder among the population 
of  interest. To begin this process, one must determine the 
heritability of  the disease of  interest. Heritability is defined 
as the percentage of  phenotypic variation that is due to 
variation in genetic factors. Often the first step is to deter-
mine if  the trait, disease, or phenotype aggregates in fami-
lies, but this will not prove that the trait of  interest is genetic 
because traits can aggregate in families for purely environ-
mental reasons, such as cigarette smoking, or because the 
prevalence of  the trait is high, such as obesity. The most 
direct way to estimate the contribution of  genetic variation 
to a disease is to measure heritability. Heritability can be 
estimated using families. For example, in twin studies a 
greater concordance of  the phenotype between identical 
(monozygotic) twins than fraternal (dizygotic) twins can 
provide evidence of  heritability of  that phenotype. For lung 
disorders, heritabilities range from 20% to 90% depending 
on the type of  lung disease, the mode of  inheritance, and 
the degree of  environmental influence.

There are two primary types of  genetic disorders, mono-
genic (due to variation in a single gene) or complex (due to 
variation in multiple genes). Monogenic disorders demon-
strate high heritability, segregate in families in a predictable 
way, and are caused by variation in a single major gene with 
less obvious environmental influence. The single gene 
usually has specific variation in the coding region of  the 
gene that leads to an abnormal protein that causes an 
obvious clinical phenotype. Often the phenotype has mul-
tiple components, suggesting multiple effects of  the gene 

variant(s). This is called “pleiotropy,” in which one variant 
has many effects. There are currently over 10,000 mono-
genic disorders that have been identified and are character-
ized in the Online Mendelian Inheritance in Man (http://
www.ncbi.nlm.nih.gov/sites/entrez?db=omim). Positional 
cloning (linkage mapping followed by association mapping; 
described later) has been the primary means of  the identi-
fication of  these genetic variants until recently. With the 
completion of  the Human Genome Project and the rapid 
advancement of  genotyping technologies, attention has 
turned to identification of  genetic variation associated with 
complex genetic disorders. Those efforts initially used posi-
tional cloning but now primarily rely on genetic association 
studies.

In contrast to monogenic disorders, complex genetic dis-
orders are caused by variation in multiple genes and mul-
tiple environmental exposures, with each genetic variant 
having a much smaller effect than those seen in monogenic 
disorders. Because of  the multiple gene-gene and gene-
environment interactions, there is no obvious mendelian 
mode of  inheritance in families for complex traits. One of  
the most prominent hypotheses for the genetic basis of  
common disease is the common disease/common variant 
hypothesis. This hypothesis suggests that key genetic deter-
minants of  common diseases have a relatively high allele 
frequency (i.e., 5% to 40%) and modest effect sizes. Given 
the modest effect sizes (odds ratios on the order of  1.1 to 
1.4), large sample sizes are necessary to identify the genetic 
variants associated with complex traits despite the high 
allele frequency expected in these disorders. It is likely that 
there is a range of  allele frequencies that predispose to 
complex diseases, with a corresponding range of  effect 
sizes, but large-scale studies to evaluate the evidence for 
rare variation as a contributor to complex disease are only 
beginning to emerge.

The dichotomy described earlier between monogenic and 
complex disease is somewhat artificial because the clinical 
phenotype of  many monogenic disorders varies as a result 
of  the specific mutation present, other modifier genes, and 
environmental exposures. As genes for complex traits begin 
to be identified, their role in monogenic disorders is also 
being elucidated.

http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim
http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim
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MOLECULAR CHARACTERIZATION 
OF GENETIC VARIATION

Molecular genetics is elegant in its simplicity. Just four base 
pairs (two purines [adenine and guanine] bind to two 
pyrimidines [thymine and cytosine]) code for 20 amino 
acids that form the molecular building blocks of  complex 
proteins. However, the assemblage of  inherited genes (geno-
types), control mechanisms, resultant proteins, and post-
translational modifications have the capacity to create a 
complex panoply of  unique biologic, physiologic, or visible 
traits of  an organism (phenotypes). The relationship 
between these rather simple molecular characteristics and 
the vast array of  complex phenotypes is, in part, explained 
by a number of  seminal discoveries that were made more 
than 50 years ago.

Gregor Mendel1 was the first to demonstrate that discrete 
traits could be inherited as separable factors (genes) in a 
mathematically predictable manner. Mendel’s laws describe 
the relationship between genotype and phenotype and 
established the concept that each gene has alternative 
forms (alleles). Charles Darwin2 made the observation that 
evolution represents a series of  environmentally responsive 
“genomic” upgrades. Thomas Morgan3 established the 
concept of  linkage by using Drosophila to discover that genes 
were organized (and inherited) on individual chromosomes, 
and that genetic material was recombined or exchanged 
between maternal and paternal chromosomes during 
meiosis and that the frequency of  recombination could be 
used to establish the relative genomic distance between 
genes. However, it was not until 1944 that Avery, MacLeod, 
and McCarty while working with Pneumococcus discovered 
that DNA was identified as the essential molecule that 
transmitted the genetic code.4 The double-helix structure of  
DNA was discovered by Watson, Crick, Chargaff, Franklin, 
and Wilkins in 1953,5 and over the next 50 years genetics 
assumed a central role in understanding the biologic and 
physiologic differences between and among species and 
between states of  health and states of  disease. In aggregate, 
these seminal discoveries led to a number of  fundamental 
principles in molecular genetics that provide the basic 
mechanisms that link the four base pairs (adenine [A] 
binding to thymine [T] and guanine [G] binding to cytosine 
[C]) to health and disease.

GENOMIC MAPS

Over the past several decades genomic maps have evolved 
from karyotypes (microscopic visualization of  chromo-
somes during metaphase) to restriction enzyme sites to 
genetic maps to maps with specific base pair sequence. In 
fact, to date there are hundreds of  vertebrate, invertebrate, 
protozoan, plant, fungal, bacterial, and viral genomes that 
have been sequenced and are available on the National 
Center for Biotechnology Information (NCBI) Web site 
(www.ncbi.nlm.nih.gov). These genomic maps have not 
only been essential for identifying which genes and sequence 
changes cause disease or enhance the risk for adverse out-
comes, these species-specific maps have also led to a very 
clear understanding of  molecular evolution and have pro-
vided essential tools for understanding aspects of  molecular 

SCOPE OF THE PROBLEM

Some complex genetic disorders, such as age-related 
macular degeneration, are oligogenic, in which a small 
number of  genes, three to five, explain the bulk of  the clini-
cal phenotype. However, for most complex traits, literally 
hundreds of  genes with small effects are likely involved in 
disease causation. Thus a series of  challenges have faced 
complex trait geneticists in the genome era of  medicine.

The field of  human genetics has continued to expand as 
the type of  genomic variation that can be measured 
expands. Parallel advances in data analysis strategies are 
necessary to ensure efficient and valid inferences based on 
the ever-increasing volume of  data that can be collected on 
large numbers of  individuals. This cyclical pattern of  
advancement has been typical of  the last several decades 
and is likely to be typical going forward. For example, initial 
problems relating to genotyping reliability and complete-
ness for common variants (those with frequency > 5% in a 
given population) that were present at the time of  release 
of  the initial sequence of  the genome have been largely 
resolved, as have the methods necessary to detect and 
control for population stratification (confounding by allele 
frequency differences in cases and controls, discussed later) 
and to account appropriately for the hundreds of  thousands 
or millions of  tests conducted in a genome-wide association 
study. Since 2010, large efforts have been focused on rese-
quencing technologies, which sequence the same site in 
multiple individuals to capture sequence variation and thus 
capture uncommon and rare variation (frequency ≤ 5%). 
As we are able to measure a larger variety of  genomic data 
(e.g., transcriptomic and epigenetic data) on ever-increasing 
numbers of  individuals, the major analytic challenges will 
be in developing methods for integration of  the different 
types of  data. For all types of  genetic variation, the ability 
to determine if  genetic effects are real or not requires repli-
cation of  results in independent populations, a process that 
can be difficult with the presence of  phenotypic heterogene-
ity across populations. In particular, varying genetic back-
grounds and environmental influences can result in 
variability in the effects of  genetic variants across popula-
tions. Finally, the ultimate challenge of  finding and verify-
ing the functional variants in putative disease genes is still 
a laborious process without a clear-cut methodology for 
success.

POTENTIAL IMPACT OF HUMAN GENETICS

Genetics has the potential, because of  its hypothesis-free 
nature, to identify novel mechanisms of  disease pathobiol-
ogy and hence to identify novel targets for a therapeutic 
intervention or disease prevention. In addition, genetics has 
the potential to predict specific subgroups of  patients with 
a different clinical course or response of  their disease, or 
differences in treatment. Finally, genetics has the potential 
to allow for early detection of  susceptible individuals at risk 
for a specific disease phenotype or to allow avoidance of  
environmental factors that are known to cause the disease 
or to institute preventive therapy before disease develops. 
These genetic insights are still just beginning to be applied, 
and it will take time for genetics to become routinely used 
at the bedside.

http://www.ncbi.nlm.nih.gov
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