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Foreword

When I received the invitation from Maria Claudia Issa, M.D., Ph.D., and
Bhertha Tamura, M.D., Ph.D., to write one of the chapters of this marvelous
book, I was very happy. Later, upon receiving the mission to write the prologue
of this book, whose editors, with numerous publications in the international
scientific field of cosmetic dermatology, dignify the Brazilian dermatology, left
me extremely honored. In this book, some of the leading medical doctors and
research scientists from Brazil and from all over the world present their
professional experience in the cosmetic dermatology area.

Cosmetic dermatology is constantly evolving. Procedures for rejuvenating
the skin are actively sought by people, nowadays. As dermatology grows as a
specialty, an increasing proportion of dermatologists will become proficient in
the delivery of different procedures. Even those who do not perform cosmetic
procedures must be well versed in the details to be able to guide their patients.

Numerous major advances in the field of the cosmetic dermatology area,
including botulinum exotoxin, soft tissue augmentation, chemical peels, cuta-
neous lasers, light source–based procedures, and the state of the art of derma-
tologic and cosmetic prescriptions, have been developed and enhanced by
dermatologists and plastic surgeons.

Lasers, lights, and related energies are routinely used in cosmetic derma-
tology. These are very important tools in the armamentarium of the dermatol-
ogy. Very interesting results in the treatment of photoaging, rosacea, scars, and
stretch marks, among others, can be obtained with these procedures. However,
accuracy in its management as well as the knowledge of possible complica-
tions and their management are of extreme importance. In this volume,
different types of devices are thoroughly discussed.

The series Clinical Approach and Procedures in Cosmetic Dermatology
offers a wonderful and embracing text. It was a pleasure to contribute in this
unique book with so many well-renowned authors.

This work project is a text certainly of inestimable value for those who wish
to deepen their knowledge in the field of cosmetic dermatology.

Hoping that you will enjoy learning a lot from this book!

Mônica Manela Azulay, M.D., Ph.D.
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Preface

Nowadays, life expectation had increased and for a better quality of life, people
are looking for beauty, aesthetics, and health. Dermatologists and plastic
surgeons who work with cosmetic dermatology can help patients to maintain
a healthy and youthful skin. Topical and oral treatments associated with full-
face procedures using peelings, lasers, fillers, and toxins are increasingly being
used, successfully substituting or postponing the need for plastic surgeries.

This series of book is very special among other ones already published as it
encompasses all subjects related to this area of dermatology. All authors are
experts in the field of cosmetic dermatology. Literature review and its corre-
lation with authors’ experience is a differential feature of this work.

This work had been divided into four volumes due to the breadth of the
subjects, which cover skin anatomy and histopathology, physiology, patient’s
approaches, common cosmetic dermatosis, topical and oral treatments, and
cosmetic procedures.

Over the last decades, laser technology had great improvement. This
volume on Lasers, Lights and Other Technologies was designed to bring a
basic structural framework of the use of lasers, lights, and related energies in
cosmetic dermatology. Here, Prof. Maria Issa, Prof. Bhertha Tamura, and
collaborators discuss different types of devices with their indications, param-
eters to achieve better results, and management of possible complications.
Some particularities including the use of lasers for different phototypes and
body areas are also described.

The Clinical Approach and Procedures in Cosmetic Dermatology was
prepared to be a guide in cosmetic dermatology. It can be considered a
complete encyclopedia in the field of cosmetic dermatology and, for this
reason, it is extremely useful for those who already work with cosmetic
dermatology as well as for beginners in this field. This is a new reference
work project, and we are delighted to have you on board.

Maria Claudia Almeida Issa, M.D., Ph.D.
Bhertha Tamura, Ph.D.
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Part I

Biophotonics, Lights, Ablative and
Non-ablative Lasers



Biophotonics

Álvaro Boechat

Abstract
Light is one of the most beautiful forms of pure
energy, we know some of its therapeutic prop-
erties, but there is still much to be explored.
The aim of this chapter is to provide a better
understanding of the best known light tools
used in modern medicine, such as laser, intense
pulsed light, the advent of fractional systems,
radio frequency, and hybrid systems, which
combine light and radio frequency, how they
work, how to select which device will be better
for your application, and how light and RF
interact with the skin. Thus, this will enable
the improvement of current treatment tech-
niques as well as broaden the horizons of appli-
cations of these devices.
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Introduction

The laser and pulsed light are simply sources of
natural light. The visible light that we experience
in our day to day is only one facet of a much
broader physical phenomenon known as “electro-
magnetic radiation.”

As shown in Fig. 1, the electromagnetic spec-
trum (Siegman 1986) includes several well-
known phenomena, such as TV and radio waves,
microwave, infrared, and, on the other side of the
spectrum, ultraviolet and X-ray. However, our
eyes are sensitive to only a very narrow range of
the spectrum, which forms the visible light from
violet to red. It is important to realize that each
visible color or each emission spectrum is associ-
ated with a frequency or wavelength.

Thus, the differentiation between blue and
green, for example, is related to their frequencies.
It is similar to the musical notes; the difference of
the note “do” (C) from the note “sol” (G) or “fa”
(F) is their frequencies; one is low pitched and the
other high pitched. Drawing a parallel with them,
we can see that, in the light spectrum, the higher
frequencies correspond to blue and violet and, on
the other side of the spectrum, the lower frequen-
cies correspond to red. As light frequencies are
very high, of the order of millions of hertz, they
are characterized by their wavelength or the dis-
tance between two adjacent peaks in the wave
illustrated in Fig. 2 (Siegman 1986; Arndt et al.
1997).

Light radiation may be defined as the point-to-
point power transmission in space, regardless of
the medium in which it is being propagated. Light
or electromagnetic radiation propagates at a high
speed in the open space independent of the trans-
mission medium in the form of waves that can
travel in the vacuum or in spaces containing mat-
ter, such as gases, liquids, or solids. As it enters, or
moves from, a different medium, it will suffer
changes in direction and speed of propagation.

Lasers are sources of electromagnetic radia-
tion, or light, with some special characteristics
that are different from other light sources, such
as a car headlight or a lamp.

The word laser is an acronym for light ampli-
fication by stimulated emission of radiation.
We can divide this acronym into two well-defined
parts: the stimulated emission phenomenon and
the light amplification.

Stimulated Emission

Light is a form of energy generated, emitted, or
absorbed by atoms or molecules. To emit energy,
the atom or molecule is raised to an excitation
energy level, above its natural resting state
(in which there is excess energy to be discharged).
Atoms cannot maintain the excitement for long
periods of time. Consequently, they have a natural
tendency to eliminate the excess energy in the
form of emission of particles or packets of light
waves called photons (Fig. 3a). This phenomenon
is called spontaneous emission of light. The wave-
length (λ), or the frequency of the emitted pho-
tons, is related to the photon energy through the
relationship:

Ephoton ¼ hc=λ

h – Planck universal constant
= 6.6260693 � 10�34 J.s

c – Speed of light = 300,000 km/s
λ – Wavelength of the light (nanometers – nm)

We can draw an important conclusion from this
equation: long wavelengths of light, such as red,
carry less energy than shorter wavelengths, such
as blue, which is at the other end of the spectrum.

Each atom or molecule in nature has different
energy levels of excitement. Consequently, each
element emits photons with different energies and
different wavelengths (frequencies). All these pri-
mary radiations are monochromatic. The fact that
the sunlight is polychromatic indicates that it is
composed of a mixture of several distinct
elements.
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Another important relationship is the fre-
quency with wavelength (Siegman 1986):

f ¼ c=λ

f – Frequency of the light wave (Hz)
c – Speed of light = 300.000 km/s
λ – Wavelength of the light (nanometers – nm)

We see that these two quantities are inversely
proportional; that is, the higher the frequency, the
smaller the wavelength. For example, the

frequency of visible light, which is very high of
the order of Terahertz, has a very small wave-
length, being the size of a molecule. As an anal-
ogy, a FM radio wave, of the order of Megahertz,
has a wavelength the size of a two-story house.

Atoms can be excited by different mecha-
nisms: heat, mechanical shocks with other parti-
cles as an electrical discharge (collision with
electrons), or when they selectively absorb elec-
tromagnetic radiation energy from other photons.
This is a natural process that occurs all the time
around us, but as its magnitude is very small and
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very narrow in the visible spectrum, we cannot see
it. The location on Earth where we can more easily
observe this phenomenon is, for example, near the
North Pole, with the famous Northern Lights or
auroras. It is produced by the impact between air
molecules and cosmic particles from the Sun that
constantly bombard Earth, producing a phenome-
non of luminescence in the upper atmosphere
(Fig. 3b).

However, atoms can also decay producing light
radiation in a stimulated form. In 1917, Albert
Einstein postulated and proved the existence of
this mechanism (Siegman 1986; Wright and Fisher
1993; Arndt et al. 1997). When an excited atom
collides with a photon, it instantly emits a photon
identical to the first (Fig. 3a). This stimulated emis-
sion follows the following basic laws:

(a) The stimulated photon travels in the same
direction of the incident.

(b) The stimulated photon synchronizes its wave
with the incident; in other words, the waves of
the two photons align their peaks adding their
magnitudes and thereby increasing the inten-
sity of the light. Photons with aligned peaks
produce a coherent (organized) light. In a
coherent beam, light travels in the same direc-
tion, in the same time, and with the same
energy.

The end result of a stimulated emission is then
a pair of photons that are coherent and that travel
in the same direction. The stimulated emission of
light is the working principle of a laser, invented
more than 50 years after the discovery of Einstein.

Fig. 3 (a) Spontaneous emission of light. (b) Northern Lights, or aurora borealis, an example of spontaneous emission of
light
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Light Amplification

To illustrate the generation of light inside a laser,
let us first imagine a rectangular box or a tube, as a
straight cylinder, with a large amount of identical
atoms or molecules, as an example, a fluorescent
lamp tube with its gas. At each end of the tube, we
place mirrors, which because of the construction
will be parallel to one another. At one end, the
mirror is totally reflective (100 % mirror), and at
the other end (the exit window of the light – output
coupler), the mirror is partially reflective (80 %
mirror), so that part of the light is reflected back to
the tube and part is transmitted through the mirror
to the outside (Wright and Fisher 1993; Kulick
1998; Boechat 2009; Raulin and Karsai 2011;
Kaminsky Jedwab 2010).

Let us also imagine that the atoms are excited
to a higher-energy level by an external source
(a light source or an electrical discharge), as if
we had activated the switch turning on the lamp.
Through the mechanism of spontaneous emission,
which takes place completely randomly, the atoms
emit photons that begin traveling in various direc-
tions within the tube. Those hitting against the
tube wall are absorbed and lost as heat,
disappearing from the scene. In the case of a
lamp, they leave the tube into the environment,
illuminating the room. On the other hand, the
emitted photons traveling parallel to the tube
axis are likely to find other excited atoms and
thus stimulate the emission of additional photons,
which are consistent with the stimulating photon
and travel in the same direction – i.e., along the
longitudinal axis of the tube. These two photons
continue their journey, again with the likelihood
of stimulating, through a similar process, two
additional photons – all consistent with each
other and traveling in the same axis. The progres-
sion continues indefinitely and 8, 16, 32, 64, etc.,
photons are produced, all traveling in the same
direction, as illustrated in Fig. 4.

It is clearly established a light amplification
process that generates a large luminous flux in
the longitudinal direction of the tube.

The mirrors perpendicular to the tube axis
reflect the photons back intensifying this effect

of amplification. Each of these reflected photons
traveling along the axis in the opposite direction
contributes to the chain reaction effect generating
a stream of coherent photons.When they reach the
partially reflecting mirror, 80 % of the photons
return to the tube continuing the amplification
effect. The remaining 20 % goes out forming the
laser beam (Fig. 5a, b). They represent in absolute
terms a very intense beam of photons produced by
the amplification effect. The tube and its excited
medium, together with the mirrors, are called the
resonator (or oscillator) which is the basic com-
ponents of a laser in addition to the excitation
source.

Characteristics of a Laser Light

As described above, the laser light has unique
properties that make them different from other
light sources (Goldman and Fitzpatrick 1994;
Arndt et al. 1997; Kaminsky Jedwab 2010;
Sardana and Garg 2014):

(a) Monochrome: it is generated by a collection
of identical atoms or molecules; thus, all pho-
tons emitted have the same wavelength, a
single frequency. This feature is important
because of the selective absorption of the
human tissue, which will be presented in the
next section.

(b) Coherent: because of the stimulated emission
and the way the light is amplified, which is
only in the longitudinal direction inside the
resonator, the photons are organized, as sol-
diers marching in a military parade. This is
called spatial and temporal coherence. At any
point of a laser beam, the photons (or light):
(a) Have the same power
(b) Travel in the same direction
(c) Travel at the same time

Being coherent, light from a laser is called
collimated. Traveling parallel to the tube axis,
the laser beam has a very small divergence
angle, i.e., the light does not spread; the photon
beam is collimated (parallel). The small
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divergence allows the use of a lens system to
concentrate all the energy of the laser in a precise
way on a small focal spot (spot size), achieving a
greater concentration of light energy or bright-
ness. Optical laws tell us that the smaller the
divergence, the smaller the focal point. When we
focus a common light source such as a lamp, of
incoherent light, the focal point will be too large
and imprecise, whereas when using a laser, we
have a very fine and extremely precise focal point
and therefore a much more intense effect on the
tissue.

Energy, Power, and Fluency

The increase of temperature or the effect of treat-
ment on the tissue depends on the amount of
energy that it receives. The energy, power, and
fluency (energy density) are the physical parame-
ters that control the treatment effect and determine
the eventual increase in temperature.

Energy Is measured in Joules (J)

Power Is measured in Watts (W)

These are different parameters and they are
related trough the following equation:

Energy Jð Þ ¼ power Wð Þ � time sð Þ

Thus, energy is the amount of power delivered to
the tissue in a given time or the laser pulse

duration. The thermal effect of the laser is highly
localized. In this way, the physical quantity that
governs the thermal response of the tissue is the
amount of energy delivered to a certain area, the
overall size of the application area or the “spot
size” produced by the laser handpiece. Thus, the
energy density or fluency is measured in J/cm2

(Boechat et al. 1991):

Fluency J=cm2
� � ¼ Energy Jð Þ=Area cm2

� �

The higher the fluency, the faster the temperature
increases in the tissue and consequently the inten-
sity of the desired effect. The effect of the treat-
ment is achieved both by varying the laser output
energy and the laser pulse duration, at the tissue
application area. All commercial lasers allow us to
change easily and continuously the energy.

For a fixed operating power, we can vary the
fluency in the tissue by changing the application
area (spot size – changing the lens that focus the
laser beam in the handpiece) or by varying the
distance of the handpiece from the tissue in a
“focused” handpiece.

When we work with light in focus (Fig. 6), the
power density is at its maximum because all the
energy of the laser is concentrated in a small focal
point (usually of the order of 0.1–1 mm), called
“spot size.” At the focal point, it is possible to
precisely cut the tissue, and the application has its
maximum effect. When we move the handpiece
away from the tissue to a defocus, or out of focus

Fig. 4 Chain reaction producing photons inside the laser resonator
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position, the application area becomes larger
reducing the power density (fluency) and increas-
ing the temperature in the tissue. At this position,
the effect becomes milder, producing a superficial
effect of vaporization and coagulation (used in
skin rejuvenation – skin resurfacing).

Another widely used laser handpiece is called
“collimated.”Here the laser beam remains parallel
(collimated) and constant regardless of the

distance from the tissue. It is used in hair removal
systems and various types of skin treatment, such
as tattoo and melisma removal (Fig. 7).

It is important to note how the cutting effect is
controlled when using a laser. The surgeon is used
to control the depth of the cut by the pressure
exerted on the blade against the tissue. In the
laser, as there is no mechanical contact with the
tissue, the cut is determined by two factors:

M1 – 100%a

b

M1 – 100%M2 – 80% M2 – 80%

M1 – 100%

(1)

(3) (4)

LASER RESONATOR

Fully Reflecting
Mirror

Laser Light

Partially Reflecting
Mirror

Excitation Energy

Stimulated Emission

Laser Medium

(2)

M1 – 100%M2 – 80% M2 – 80%

Laser
Beam

Fig. 5 (a) Light amplification and laser beam formation
inside a laser resonator. M1 is the 100 % reflection mirror
and M2 is the 80 % partial reflection mirror. The (1) and
(2) are excited atoms that produce photons that begin to

travel longitudinally along the resonator between the mir-
rors. The (3) and (4) are the photons traveling parallel to the
axis of the resonator that stimulate new photons, producing
the laser beam. (b) Schematic of the laser operation
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Handpiece
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Out of focus

Epidermis
Dermis

Sub-Cutaneo

Spot-size and fluency change with
handpiece distance from skin

Fluency =
Energy [J]

Spot size [Cm2]

Fig. 6 Focused headpiece. Laser in focus: power density is at its maximum (vaporizing, cutting). Out of focus: power
density is reduced (coagulation, milder treatment)

Fig. 7 Collimated handpiece. Regardless of the distance
from the skin (touching or moving away), the spot size and

fluency remain the same. Some handpieces have a zoom
effect that allows the adjustment of the spot size
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1. Hand movement speed
2. Laser energy

The speed is linked to tissue exposure time,
because if we keep the laser acting on a point
indefinitely, it begins to vaporize layer upon
layer of tissue increasing the depth of the cut.
Thus, for a constant power, if the surgeon moves
the hand slowly, he or she will produce a deep cut.
Likewise, for a movement with constant speed,
the cutting will be deeper for a greater energy.

The laser exposure time also governs the
amount of adjacent tissues which may be affected.
Modern laser systems have mechanisms that
quickly deliver energy to the tissue minimizing
the thermal effect in adjacent areas. These mech-
anisms can be through ultrafast pulses
(“ultrapulse” laser) or computerized rapid laser
beam scanning systems (fractional scanners),
used in skin rejuvenation treatments and more
recently in fractional treatment systems. The
“scanner” divides and moves the laser beam at
high speed to position it over the skin minimizing
damage to adjacent tissues. They are controlled by
computer and can execute different types of scan-
ning, with great precision and control over the
amount of tissue being vaporized (Goldman and
Fitzpatrick 1994; Arndt et al. 1997; Kulick 1998;
Alster and Apfelberg 1999; Alster 1997).

Operating Modes of a Laser

Depending on the effect of the treatment we want
to obtain on the tissue, laser systems can operate
in the following modes (Boechat 2009; Raulin
and Karsai 2011; Kaminsky Jedwab 2010;
Sardana and Garg 2014):

1. Continuous mode – CW: In this mode of
operation (also known as continuous wave),
the laser stays on, just as a normal lamp, and
emits a light beam of constant energy, as long as
we keep the system powered by the foot switch
or the power button on the handpiece (available
on some devices). It is widely used in surgeries
for coagulation or vaporization of tissue.

2. Pulsed mode: This mode works as if we
turned a lamp on and off; the laser is pulsed
electronically with the times and the intervals
between pulses controlled by the equipment
computer and selected via the panel. The rep-
etition rate or frequency (given in Hz) of the
laser pulse can also be programmed. Most
lasers used in dermatology work with ultrafast
pulses to vaporize the tissue faster than the
thermal diffusion time of the skin in order to
minimize damage to adjacent tissues, resulting
in safe and effective treatments (Fig. 8).

Fig. 8 Comparison of tissue laser cutting, showing continuous wave (CW) and ultrafast pulses that minimize the thermal
damage to adjacent tissue

Biophotonics 11



According to the laser pulse duration, pulsed
systems can be classified into:

(a) Long pulses – 0.001 s, millisecond
(ms) 10�3 s
(i) Hair removal, varicose veins

(b) Quasi-CW – 0.000001 s, microsecond (μs)
10�6 s
(i) Skin rejuvenation, onychomycosis,

inflammatory acne
(c) Q-Switched – 0.000000001, nanosecond

(ns) 10�9 s
(i) Treatment of melasma, tattoo removal

(d) Mode-Locked – 0.000000000001, picosec-
ond (ps) 10�12 s
(i) Tattoo removal and pigmented lesions

(e) Femto – 0.000000000000001, femtosecond
(fs) 10�15 s
(i) Refractive surgery in ophthalmology

Q-Switched: Nanosecond Laser

This mode is achieved by placing an optical acces-
sory inside the resonator, at the side of the laser
crystal, whose goal is to pulse optically the light
(Siegman 1986; Goldman 1967; Raulin and
Karsai 2011). It is generally used in crystal lasers
such as ruby, alexandrite, and Nd:YAG, described
below. The goal is to accumulate the laser energy
at very high levels and release it at extremely rapid
pulses. The result is a very high-peak-power laser
pulse (often higher than the common pulse),
which can penetrate deep into the tissue, with
minimal side effects. Then a shockwave-induced
mechanical action caused by the impact of the
laser pulse onto the target tissue causes its frag-
mentation. In the long and Quasi-CW pulsed
modes, the effect is purely thermal.

The Q-Switch can be passive, when using a
crystal called “saturable absorber” that produces
rapid pulses, or active, when using an electronic
modulator crystal called “Pockels cell.”

Passive systems using the saturable absorber
are generally simpler and more compact resulting
in smaller portable devices or systems installed
into handpieces incorporated to a platform. They
are more limited as it is not possible to control

efficiently the stability of the fast pulse; the crystal
is sensitive to higher energies, which limits the
maximum working energy; and the application
spot size is limited to a few millimeters
(1–3 mm). They also fail to achieve high repeti-
tion rates of pulses (high frequencies), working in
a maximum of 2–3 Hz.

The active Q-Switch uses a Pockels cell which
is a crystal subjected to a high electric frequency
and is electronically controlled to produce a very
fast and stable light switching effect. The result is
faster pulses with very high peak powers that are
not possible with passive systems. Thus, they can
handle high energy, larger spot sizes (10 mm), and
faster repetition frequencies of 2–20 Hz. Equip-
ment with active Q-Switch allow the device to be
turned off, and thus the laser can also work in the
Quasi-CW mode, with micropulse, giving greater
flexibility to the system (Fig. 9).

The classic application is in tattoo removal and
the treatment of pigmented skin lesions such as
dark circles, postinflammatory hyperpigmentation,
and melasma (Goldman 1967; Reid and Muller
1978; Raulin et al. 1998; Chang et al. 1996;
Shimbashi et al. 1997; Reid et al. 1983, 1990;
Stafford et al. 1995; Ogata 1997; Chan et al.
1999; Jeong et al. 2008; Mun et al. 2010) (Fig. 10).

Mode-Locked: Picosecond Laser

To achieve picosecond pulses, a technique called
“mode-locking” is used (Siegman 1986; Raulin
and Karsai 2011; Sardana and Garg 2014). The
base is a Q-Switch system as described above, in
which nonlinear effects of the Q-Switch crystal are

Fig. 9 Diagram of a Nd:YAG laser with Q-Switch (QS).
M1 is the 100 % mirror; M2 is the output coupler
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stimulated and modulated inside the resonator in
order to create faster pulses with a technique in
which only they are amplified. It ismore commonly
used in crystal lasers as alexandrite and Nd:YAG.

There is the passive, with the saturable
absorber, and the active mode-locking, with the
Pockels cell electronically controlled. The limita-
tions and benefits of each are the same as in the
Q-Switched systems.

The picosecond lasers for dermatology provide
pulses ranging from 375 to 760 ps.

To understand the picosecond laser advantages
over a nanosecond device, we need to go back to
the relationship between energy, power, and pulse
duration, described above. We see that the peak
power is inversely proportional to pulse duration.
In other words, faster (shorter) pulses generate
higher powers for the same energy:

Power Wð Þ ¼ Energy JÞ=Duration of the Pulse sð Þð

A picosecond laser generates a very high peak
power, making the photomechanical fragmenta-
tion of the target tissue and consequently the treat-
ment more efficient. It also does not need high-
energy levels. Working with very low energy
results in milder treatments and faster recovery
time. For example, in tattoo removal, a picosec-
ond laser needs fewer sessions than a nanosecond
system, and applications can be performed every
15 days, while in nanosecond systems, sessions
are 45–60 days apart. The faster the system is, the
milder and more effective is the treatment. That is

why the industry has been investing in the devel-
opment of these ultrafast devices (Fig. 11).

Aswewill see in the following chapter, the pulse
duration governs the way in which light interacts
with the tissue (selective photothermolysis), and by
varying the pulse duration, we can completely
change the laser application in dermatology.

Laser Types

All laser devices consist of the following parts
(Siegman 1986; Goldman and Fitzpatrick 1994;
Boechat 2009; Kaminsky Jedwab 2010):

1. The resonator/oscillator – with mirrors (total
and partial reflectors) and active medium,
which, when excited, produces the light and
thus determines the wavelength

2. The excitation source (also called pumping) –
which delivers power to the active medium
producing the photons

Fig. 10 Laser tattoo removal

Fig. 11 Picosecond Laser PicoWay™ Nd:YAG/KTP
(Syneron Candela)
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3. Laser beam delivery system from the source to
the hand of the operator

4. Handpiece, with focusing lens or a scanning
system

The industry uses various elements in the man-
ufacture of laser sources in order to cover a grow-
ing range of electromagnetic wavelengths. Today,
we have ultraviolet lasers, visible light, and infra-
red. For this end, gases, liquids, crystals, fiber
optics, and semiconductors (electronic compo-
nents) are used.

The pumping of each element also varies; thus,
electrical discharges, radio frequency, and light
sources such as flash-lamps or even other lasers
are used.

To carry the laser light from where it is
generated in the resonator to the hand of the
user who is making the application, various
mechanisms are used depending on the wave-
length and energy of the equipment. The most
common are:

Articulated arm – a set of multiple mirrors posi-
tioned at the corners of articulated pipes to
allow the freedom of movement in all direc-
tions (Fig. 12).

Optical fiber – thin waveguide with a core made
of quartz covered with a thin layer called clad-
ding, which is made of a slightly different
material and encapsulated with plastic and
metal coatings to give it flexibility. It delivers
the laser beam by multiple internal reflections;
that is, light enters the fiber, reflects on the
core/cladding interface and keeps moving
until it exits the optical fiber. Note that at the
output of the fiber the laser beam has a wide
divergence and is no longer collimated. In
other words, the beam spreads, losing part of
its coherence (Boechat et al. 1991, 1993)
(Figs. 13 and 14).

A handpiece is placed at the end of the beam
delivery system for either an articulated arm or an
optical fiber. It contains the lens system which
focuses the laser light on the working area facili-
tating the handling of the laser during treatment,
as already described above. In fractional laser
devices, described below, the handpiece holds
the scanning systems, or scanners, in addition to
the lenses.

Bellow we describe some typical commercial
laser systems used in medicine, grouped
according to the laser medium (Alster and

Fig. 12 Diagram of an
articulated arm
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Apfelberg 1999; Alster 1997; Boechat 2009;
Raulin and Karsai 2011; Kaminsky Jedwab
2010; Sardana and Garg 2014).

Gas Lasers

Excimer
Gas molecules that exist only in the excited state,
called “dimers,” form the excited medium; exam-
ples are molecules such as halogens combined
with noble gases (ArF, KrF, XeCl, Xef). The
word “excimer” is an abbreviation of the term
“excited dimer.” The emission covers some wave-
lengths in the ultraviolet range such as 193 nm
ArF, 222 nm KrCl, 248 nm KrF, and 308 nm
XeCl. The pumping is usually made by electric
discharge or the shock of electrons with gas

molecules. Quartz optical fibers are used as
beam delivery system. Since the wavelength is
very small and carries a high energy, these lasers
are widely used for high precision incisions or
tissue ablation, such as in ophthalmic refractive
surgery (myopia). In dermatology, this system has
shown excellent results in the treatment of psori-
asis and vitiligo (Zelickson et al. 1996; Guttman
2000).

Fig. 15 RF-pumped CO2 laser with articulated arm,
eCO2™ (Lutronic Inc.)

Fig. 13 Diagram of an
optical fiber showing the
beam divergence at the
output

Fig. 14 Surgical laser with optical fiber
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Argon Ion
The excited ionized argon gas, Ar+, forms the
laser medium. Pumping is made by electrical dis-
charge. The wavelength can vary between 488 nm
(blue) and 514 nm (green). It uses quartz optical
fiber as the delivery system (Siegman 1986;
Boechat 2009).

Helium-Neon (He-Ne)
The excited medium is a mixture of helium and
neon gases. It is also pumped by electrical dis-
charge. The wavelength is in the visible range,
632.8 nm, i.e., red. These systems are generally
used for low-power applications such as cell stim-
ulation and laser pointers or aiming systems for
infrared invisible lasers. It uses quartz optical
fibers (Siegman 1986; Boechat 2009).

Carbon Dioxide (CO2)
The CO2 is still one of the most used lasers in
surgery, dermatology, and industrial applications.
Its power may vary from a few KWup to MW in a
continuous or pulsed manner. The laser medium is
a mixture of gases including N2 (nitrogen – 13–45
%), He (helium – 60–85 %), and CO2 (1–9 %).
Pumping is achieved by high-voltage electric dis-
charge or radio frequency (RF). The molecule of
CO2 is excited by mechanical shock with elec-
trons, of the N2 and He molecules. The wave-
length is in the infrared range at 10,640 nm. This
is a relatively efficient laser (30 % of electro-
optical conversion), and because of that, it has
low-power consumption and maintenance. It
uses an articulated arm and special dielectric
coated flexible hollow waveguides (Siegman
1986; Kulick 1998; Alster and Apfelberg 1999;
Alster 1997) (Fig. 15).

Liquid Laser

Dye Laser
It uses a liquid Rhodamine solution (R6G), which
is a fluorescent dye, as the laser medium. It is
pumped by a flash-lamp or another laser. The
wavelength may vary continuously from 300 to
1,000 nm, and the resonator can be tuned. It is
most commonly used in yellow (585–600 nm).
Its main application is the treatment of vascular

lesions and inflammatory processes of the skin. It
uses quartz optical fiber (Siegman 1986; Reichert
1998; Mcmillan et al. 1998; Reyes and Geronemus
1990) (Fig. 16).

Solid-State Laser (Crystal)

Figure 17 shows the schematics of the most com-
mon solid-state laser systems in the market. The
mirrors, the laser rod (the crystal), and the flash-
lamp, used for the pumping inside a cavity made
of a coated elliptical reflecting material – usually
ceramic or a large resistance metal such as gold –
compose the resonator (Siegman 1986; Boechat
2009).

Ruby: Cr3+:Al2O3

It was the first laser developed by Maiman in 1961
(Siegman 1986; Goldman and Fitzpatrick 1994;
Arndt et al. 1997) (Siegman (1986) Lasers), but it
was some time before this system started to be used

Fig. 16 Flash-lamp-pumped dye laser, Vbeam Perfecta™
(Syneron Candela)
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