Bariatric Endocrinology

Evaluation and Management of Adiposity, Adiposopathy and Related Diseases

J. Michael Gonzalez-Campoy Daniel L. Hurley W. Timothy Garvey *Editors*

Bariatric Endocrinology

J. Michael Gonzalez-Campoy Daniel L. Hurley • W. Timothy Garvey Editors

Bariatric Endocrinology

Evaluation and Management of Adiposity, Adiposopathy and Related Diseases

Editors J. Michael Gonzalez-Campoy MNCOME Eagan, MN USA

Daniel L. Hurley Mayo Clinic Rochester, MN USA

W. Timothy Garvey University of Alabama - Birmingham Birmingham, AL USA

The Birmingham VA Medical Center Birmingham, AL USA

ISBN 978-3-319-95653-4 ISBN 978-3-319-95655-8 (eBook) https://doi.org/10.1007/978-3-319-95655-8

Library of Congress Control Number: 2018957471

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To our colleagues, especially our predecessors, whose inquisitive minds, work, and dedication to the advancement of science have led to the publication of this textbook.

To our patients with overweight, obesity, and adiposopathy, for whom we continue this work – they inspire and motivate us.

And to our families, for their unwavering love and support – they allow us to pursue our scientific and medical endeavors, for the common good.

Preface

At its annual meeting in 2017 the United Nations Educational, Scientific and Cultural Organization (UNESCO) inscribed the Caves and Ice Age Art in Swabian Jura, Germany on the World Heritage List. The caves have Aurignacian layers which date from 43,000 to 33,000 years ago. Among the items found in these ancient layers is a 6 cm tall statuette of a woman, carved out of mammoth ivory. This is the oldest known statue depicting a human being, and the woman clearly has obesity. Known as the Venus of Hohle Fels, the statuette helps us understand that for as long as there has been humanity, there have been individuals who can accumulate adipose tissue. Ancient civilizations, including the Egyptians and the Greek, came to regard obesity as a disease, a concept which was forgotten and which up until recently was still the subject of intense debate.

Over the years the condition of having excess adipose tissue has been named obesity, fatness, adiposity, overweight, corpulence, plumpness, chubbiness, stoutness, portliness, heaviness, tubbiness, flabbiness, largeness, chunkiness, heftiness, and bulkiness. Obesity was considered a reflection of success and wealth – those with the means could afford the regular ingestion of excess calories, and perhaps the service of others, leading to the accumulation of fat mass. Historical figures like King Henry VIII of England exemplified obesity as a disease – he was known to be ill from his obesity, and his gout attacks are chronicled for posterity.

With wars and worldwide famine, with infectious diseases that limited longevity, with limitations of the food supply, and with lifestyles that demanded physical activity, the historical prevalence of obesity had been limited. Individuals with obesity were featured attractions in traveling circuses, including Jack "The Happy Fat Man" Eckert and the "Humongous Circus Fat Man 'Tom Ton'", both of whom achieved notoriety at the turn of the nineteenth century.

With the industrialization of the world, humanity changed. Over the second half of the twentieth century, the food supplies of industrialized nations started to provide a steady stream of nutrients. There also developed myriads of disincentives for physical activity. With the advent of public health interventions, including waste disposal and water purification, the burden of infectious diseases significantly abated. And with the implementation of pasteurization, sterile techniques, and antibiotic treatments, the lifespan of human beings has been significantly prolonged. This all has allowed for the development of chronic diseases, including overweight and obesity, over the extended years of life for modern day humans.

We now understand that overweight and obesity represent a continuum of a complex, multifactorial disease that leads to the loss of health for most individuals who have it. Further, we now also realize that adiposity (the accumulation of fat mass) is but one aspect of the disease. The discovery that adipose tissue is an endocrine organ, and that the adipocyte is an endocrine cell, established that there are changes in anatomy and function that are at the genesis of metabolic diseases. Adiposopathy and "sick fat" are terms that are now engrained in the literature which encompass these pathophysiological changes. For some of our colleagues, these terms are not acceptable (they cannot take ownership of what they did not conceive), and this has led to scientific discordance. We respectfully agree to disagree. Yet, for a new generation of physicians and scientists, familiarity with these terms has opened a new frontier in medicine.

This textbook has been written with an adipocentric perspective. Not only is it a thorough review of obesity medicine, it also helps the reader understand the importance of adipose tissue dysfunction in the genesis of the metabolic complications of overweight and obesity. Bariatric endocrinology is thus born, paving the way for a new generation of physicians to diagnose and treat adiposopathy.

Eagan, MN, USA Rochester, MN, USA Birmingham, AL, USA J. Michael Gonzalez-Campoy Daniel L. Hurley W. Timothy Garvey

Contents

1	Bariatric Endocrinology J. Michael Gonzalez-Campoy	1
2	The Adipocyte Elena A. Christofides	19
3	Hormonal Regulation of Energy Balance and Energy Stores J. Michael Gonzalez-Campoy	37
4	Central Nervous System Regulation of Energy Balance and Energy Stores J. Michael Gonzalez-Campoy	59
5	Role of the Gut in the Regulation of Energy Balance and Energy Stores Jila Kaberi-Otarod and Yi-Hao Yu	77
6	Adiposopathy. Elena A. Christofides and J. Michael Gonzalez-Campoy	99
7	Clinical Definition of Overweight and Obesity W. Timothy Garvey	121
8	Evaluation and Management of the Patient with Obesity or Overweight Israel Hartman	145
9	Primary Causes of Adipose Tissue Weight Gain Yi-Hao Yu and Jila Kaberi-Otarod	157
10	Secondary Causes of Adipose Tissue Weight Gain Daniel L. Hurley	173
11	Physical Manifestations of Obesity Jeffrey Sicat	195

12	Evaluation and Treatment of Atherogenic Dyslipidemia J. Michael Gonzalez-Campoy and Caroline M. Houston	211
13	Evaluation and Treatment of Insulin Resistance and Hyperglycemic States Daniel L. Hurley and Farhad Zangeneh	235
14	Evaluation and Treatment of Hypertension	251
15	Gonadal Dysfunction in Males with Overweight or Obesity, and Adiposopathy J. Michael Gonzalez-Campoy	271
16	Gonadal Dysfunction and Infertility in Women with Obesity J. Michael Gonzalez-Campoy	283
17	Neoplasia in Patients with Excess Fat Mass	293
18	Biopsychosocial Modifiers of Obesity Domenica M. Rubino	325
19	Medical Nutrition Therapy for Weight Management Scott D. Isaacs	361
20	Physical Activity for Weight Management Scott D. Isaacs	379
21	Pharmacotherapy for Weight Management Elise M. Brett	395
22	Bariatric Procedures. J. Michael Gonzalez-Campoy	413
Index		

Editors and Contributors

Editors

J. Michael Gonzalez-Campoy, MD, PhD Minnesota Center for Obesity, Metabolism and Endocrinology, PA (MNCOME), Eagan, MN, USA

W. Timothy Garvey, MD, FACE Department of Nutrition Sciences, The University of Alabama at Birmingham, University of Alabama Hospital, Birmingham, AL, USA

The Birmingham VA Medical Center, Birmingham, AL, USA

Daniel L. Hurley, MD Mayo Graduate School of Medicine, Mayo Clinic, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA

Contributors

Elise M. Brett, MD, FACE, CNSC, ECNU Icahn School of Medicine at Mount Sinai, Division of Endocrinology, Diabetes, and Bone Disease, New York, NY, USA

Elena A. Christofides, MD Endocrinology Associates, Inc., Columbus, OH, USA

Israel Hartman, MD, FACE University of Texas Southwestern Medical School, Department of Endocrinology, Dallas, TX, USA

Caroline M. Houston, MD The Brody School of Medicine at East Carolina University, Division of Endocrinology, Diabetes, and Metabolism, Greenville, NC, USA

Scott D. Isaacs, MD, FACP, FACE Atlanta Endocrine Associates, Atlanta, GA, USA

Jila Kaberi-Otarod, MD, CNSC Geisinger System – North East, Department of Nutrition and Weight Management, Scranton, PA, USA

Quang T. Nguyen, DO, FACE, FACP, FTOS Las Vegas Endocrinology, Clinical Education, AZCOM, TUNCOM, Henderson, NV, USA

Raymond A. Plodkowski, MD University of California San Diego, Division of Endocrinology and Metabolism, Scripps Clinic, San Diego, CA, USA

Domenica M. Rubino, MD Washington Center for Weight Management and Research, Arlington, VA, USA

Jeffrey Sicat, MD, FACE Virginia Weight and Wellness, Glen Allen, VA, USA

Yi-Hao Yu, MD, PhD Weight Loss and Diabetes Center, Department of Endocrinology, Stamford, CT, USA

Greenwich Hospital and Endocrinology Associates of Greenwich, Northeast Medical Group, Yale-New Haven Health, Greenwich, CT, USA

Farhad Zangeneh, MD Endocrinology, Diabetes and Osteoporosis Clinic, Sterling, VA, USA

Abbreviations

11B-HSD	11-beta-hydroxysteroid dehydrogenase
2-AG	Endocannabinoid 2-arachidonoylglycerol
5-HT	5-hydroxytryptamine, serotonin
A1C	Hemoglobin A1c
AA	Amino acid
AACE	American Association of Clinical Endocrinologists
ACC	American College of Cardiology
ACE	American College of Endocrinology
ACEi	Angiotensin-converting enzyme inhibitor
ACTH	Adrenocorticotropic hormone
AD	Adiposis dolorosa
ADA	American Diabetes Association
ADA	Americans with Disabilities Act
ADHD	Attention deficit hyperactivity disorder
AG	Acylated ghrelin
AGB	Adjustable gastric band
AGPAT	Acylglycerophosphate acyltransferase
AgRP	Agouti-related protein
AHA	American Heart Association
AHI	Apnea-hypopnea index;
AHSD	α-hydroxysteroid dehydrogenase
AICR	American Institute for Cancer Research
ALA	Alpha-linolenic acid
ALLHAT	Antihypertension and Lipid-Lowering treatment to prevent
	Heart Attack Trial
AMA	American Medical Association
AMP	Adenosine monophosphate
AMPK	Adenosine monophosphate-activated protein kinase
AN	Anterior nucleus of the hypothalamus
AP	Area postrema
Apo E	Apolipoprotein E

apo	Apolipoprotein
ARB	Angiotensin receptor blocker
ARC	Arcuate nucleus of the hypothalamus
ART	Assisted reproductive technologies
ASBP	American Society of Bariatric Physicians
ASBS	American Society for Bariatric Surgery
ASMBS	American Society for Metabolic and Bariatric Surgery
ASP	Acylation-stimulating protein
ASSIST	Appetite Suppression Induced by Stimulation Trial
ATP	Adenosine triphosphate
ATP	Adult Treatment Panel
AUD	Alcohol use disorder
BA	Bile acids
BAT	Brown adipose tissue
BBB	Blood-brain barrier
BDI	Beck Depression Inventory
BDNF	Brain-derived neurotrophic factor
BE	Barrett's esophagus
BED	Binge eating disorder
BHSD	β-hydroxysteroid dehydrogenase
BIA	Bioelectrical impedance analysis
BID	Twice daily
BMI	Body mass index
BMOD	Behavior modification
BP	Blood pressure ($S = systolic$ and $D = diastolic$)
BPD	Biliopancreatic diversion
BPD-DS	Biliopancreatic diversion with duodenal switch
BRFSS	Behavioral Risk Factor Surveillance System
bT	Bioavailable testosterone
BWL	Behavioral weight loss
CABG	Coronary artery bypass grafting
cAMP	Cyclic adenosine monophosphate
CARDIA	Coronary Artery Risk Development in Young Adults study
CART	Cocaine- and amphetamine-related transcript
CB	Cannabinoid receptor
CBT	Cognitive behavioral treatment
CBTgsh	Cognitive behavioral therapy with guided self-help
CCB	Calcium channel blocker
CCK	Cholecystokinin
CDC	Centers for Disease Control and Prevention
CETP	Cholesteryl ester transfer protein
CI	Confidence interval
CKD	Chronic kidney disease
cm	Centimeters
CNPS	Cardiac natriuretic peptide system

CNS	Central nervous system
CO	Cardiac output
COR	Contrave Obesity Research
CPAP	Continuous positive airway pressure therapy
CRC	Colorectal cancer
CRH	Corticotropin-releasing hormone
CRP	C-reactive protein
CS	Cushing's syndrome
СТ	Computerized tomography
CTR	Calcitonin receptor
CV	Cardiovascular
CVA	Cerebrovascular accident;
CVD	Cardiovascular disease
CVO	Circumventricular organs
CY	Cytochrome
DA	Dopamine
DASH	The Dietary Approaches to Stop Hypertension
DBP	Diastolic blood pressure
DEXA	Dual-energy X-ray absorptiometry
DGAT	Diacylglycerol acyltransferase
DHA	Docosahexaenoic acid
DHEA	Dehydroepiandrosterone
DJB	Duodenojejunal bypass
dL	Deciliter
DM	Diabetes mellitus
DMN	Dorsomedial nucleus of the hypothalamus
DMPA	Depot medroxyprogesterone acetate
DNA	Deoxyribonucleic acid
DPP	Dipeptidyl peptidase
DPP-4	Dipeptidyl peptidase 4
DPP-41	Dipeptidyl-peptidase-4 inhibitors
DXA	Dual Energy X-ray absorptiometry
E_2	Estradiol
EAC	Esophageal adenocarcinoma
EASO	European Association for the Study of Obesity
ECG	Electrocardiogram
ED	Erectile dysfunction
EEC	Enteroendocrine cells
eGFR	Estimated glomerular filtration rate
EH	Energy homeostasis
EKG	Electrocardiogram
eNOS	Endothelial nitric oxide synthase
ENS	Enteric nervous system
EPA	Eicosapentaenoic acid
ER	Estrogen receptor

ES	Endoluminal sleeve(s)
EWL	Excess weight loss
FA	Food addiction
FBG	Fasting blood glucose
FDA	Food and Drug Administration
FFA	Free fatty acids
FFM	Fat-free mass
FGF15/FGF19	Fibroblast growth factor 15/19
FH	Familial hypercholesterolemia
FM	Fibromyalgia
FMI	Fat mass index
FML	Familial multiple lipomatosis
fMRI	Functional magnetic resonance imaging
FOURIER	Further Cardiovascular Outcomes Research with PCSK9
	Inhibition in Subjects with Elevated Risk
FPG	Fasting plasma glucose
FSH	Follitropin or follicle-stimulating hormone
fT	Free testosterone
FTO	Fat mass and obesity associated (gene)
FXR	Farnesoid X receptor
G6P	Glucose-6-phosphate
GABA	Gamma-aminobutyric acid
GBS	Gastric bypass surgery
GC	Glucocorticoid
GCGR	G-protein-coupled glucagon receptor
GERD	Gastroesophageal reflux disease
GES	Gastric electrical stimulation
GH	Growth hormone
GHRL	Growth hormone secretagogue receptor ligand
GHSR	Ghrelin/growth hormone secretagogue receptor
GIP	Glucose-dependent insulinotropic peptide
GK	Glucokinase
GLP-1	Glucagon-like peptide-1
GLP-1R	Glucagon-like peptide-1 receptor
GLUT	Glucose transporter
GLUT4	Glucose transporter 4
GM	Gut microbiota
Gn	Gonadotropin
GnRH	Gonadotropin-releasing hormone
GOAT	Ghrelin O-acyltransferase
GPAT	Glycerol-3-phosphate acyltransferase
GPCR	G-protein-coupled receptor
GRPP	Glicentin-related pancreatic peptide
GWAS	Genome-wide association studies
H&E	History and examination
H&P	History and physical examination
	v 1 v

HbA _{1c}	Hemoglobin A1C
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCFA	Healthcare Financing Administration
HCG	Human chorionic gonadotropin
HCV	Hepatitis C virus
HDL	High-density lipoprotein
HDL-C	High-density lipoprotein cholesterol
HFD	High-fat diet
HIF1	Hypoxia-inducible factor 1
HMG-CoA	3-Hydroxy-3-methyl-glutaryl-coenzyme A
HMGCR	3 Hydroxy-3-methyl-glutaryl-coenzyme A reductase
HOMA	Homeostasis model assessment
HOMA-IR	Homeostasis model assessment of insulin resistance
HP	Highly palatable
HPA	Hypothalamic-pituitary-adrenal
HPAA	Hypothalamic-pituitary-adrenal axis
HR	Hazard ratio
HRT	Hormone replacement therapy
HS-CRP	Highly sensitive C-reactive protein
HSL	Hormone-sensitive lipase
HTN	Hypertension
IAP	Intra-abdominal pressure
ICD	International Classification of Diseases
IFG	Impaired fasting glucose
IGB	Intragastric balloons
IGF	Insulin-like growth factor
IGF-1R	Insulin-like growth factor-1 receptor
IGS	Implantable gastric stimulator
IGT	Impaired glucose tolerance
IIEF-5	International Index of Erectile Function 5
IL	Interleukin
IMPROVE-IT	Improved Reduction of Outcomes: Vytorin Efficacy
	International Trial
INS	Insulin
IPT	Individual psychotherapy
IR	Insulin receptor
ISH	Isolated systolic hypertension
ITT	Intention to treat
IU	International units
IWB	Internalized weight bias
JIB	Jejunoileal bypass
JNC	Joint National Committee
JUPITER	Justification for the Use of Statins in Prevention: an
-	Intervention Trial Evaluating Rosuvastatin
Kcal	Kilocalories

kg	Kilogram
kg/m ²	kilograms/meter ²
LAR	Leptin-to-adiponectin ratio
lbs	Pounds
LCFA	Long-chain fatty acids
LDJB-SG	Loop duodenojejunal bypass with sleeve gastrectomy
LDL	Low-density lipoprotein
LDL-C	Low-density lipoprotein cholesterol
LEARN	Lifestyle, Exercise, Attitude, Relationships and Nutrition
LEP	Leptin
LEPR	Leptin receptor
LGA	Left gastric artery
LGAE	Left gastric artery embolization
LH	Lutropin or luteinizing hormone
LHA	Lateral hypothalamic area
LOCF	Last observation carried forward
LOFI	Lean-on-the-outside-fat-on-the-inside
LP(a)	Lipoprotein (a)
LPL	Lipoprotein lipase
LRYGB	Laparoscopic Roux-en-Y gastric bypass
LUTS	Lower urinary tract symptoms
LVSG	Laparoscopic vertical sleeve gastrectomy
m	Meter
MAOI	Monoamine oxidase inhibitor
MAP kinase	Mitogen-activated protein kinase
MC	Melanocortin
MC4R	Melanocortin 4 receptor
MCFA	Medium-chain fatty acid
MCH	Melanin-concentrating hormone
MCP	Monocyte chemoattractive protein
MCR4	Melanocortin receptor 4
MDD	Major depressive disorder
METs	Metabolic equivalents
mg	Milligram
MGB	mini gastric bypass
MI	Myocardial infarction
mITT	Modified intention-to-treat
mmHg	Millimeters of mercury
MN	Mammillary nucleus of the hypothalamus
MNT	Medical nutrition therapy
MRFIT	Multiple Risk Factor Intervention Trial
MRI	Magnetic resonance imaging
mRNA	Messenger ribonucleic acid
MOLL	0
MSH	Melanocyte-stimulating hormone

MTTP	Microsomal triglyceride transfer protein
MUFA	Monounsaturated fatty acids
Myf5	Myogenic factor 5
NA	Nucleus accumbens
NAASO	North American Association for the Study of Obesity
NAFLD	Nonalcoholic fatty liver disease
NASH	Nonalcoholic steatohepatitis
NB	Naltrexone-bupropion
NCEP ATP	National Cholesterol Education Program Adult Treatment
	Panel
NCEP	National Cholesterol Education Program
NCHS	National Center for Health Statistics
NEFA	Non-esterified fatty acid
NES	Night-eating syndrome
NHANES	National Health and Nutrition Examination Survey
NHLBI	National Heart, Lung and Blood Institute
NIH	National Institutes of Health
non-SHBG-bound T	Non-sex hormone-binding globulin-bound testosterone
NPC1L1	Niemann-Pick C1-Like 1
NPY	Neuropeptide Y
NTS	Nucleus tractus solitarius
OA	Osteoarthritis
OAGB	One anastomosis gastric bypass
OGTT	Oral glucose tolerance test
OMA	Obesity Medical Association
OR	Odds ratio
OSA	Obstructive sleep apnea
OVRD	Oral volume restricting device
OX	Orexin receptor
OXM	Oxyntomodulin
P_4	Progesterone
PAI-1	Plasminogen activator inhibitor-1
PAP	Phosphatidic acid phosphorylase
PCI	Percutaneous coronary intervention
PCOS	Polycystic ovary syndrome
PCS	Pain Catastrophizing Scale
PCSK9	Proprotein convertase subtilisin/kexin type 9
PE	Pulmonary embolus;
PFC	Prefrontal cortex
PG	Percutaneous gastrostomy
PGC-1α	PPAR gamma coactivator 1-alpha
PHEN/TPM	Phentermine-topiramate
PI3K	Phosphatidylinositol 3-kinase
РКА	Protein kinase A
PN	Posterior nucleus of the hypothalamus

POMC	Pro-opiomelanocortin
PON	Preoptic nucleus of the hypothalamus
PP	Pancreatic polypeptide
PPAR	Peroxisome proliferator-activated receptor
PPG	Postprandial glucose
PPNAD	Primary pigmented nodular adrenocortical disease
PR	Peripheral resistance
PRL	Prolactin
PSA	Prostate-specific antigen
PSCK1	Prohormone convertase 1
PTCA	Percutaneous transluminal coronary angioplasty
PTSD	Post-traumatic stress disorder
PUFA	Polyunsaturated fatty acid
PVN	Paraventricular nucleus of the hypothalamus
РҮҮ	Peptide YY
OD	Daily
OOL	Ouality of Life
RA	Retinoic acid
RAAS	Renin-angiotensin-aldosterone system
RAMPs	Receptor activity-modifying proteins
RBP	Retinol-binding protein
REE	Resting energy expenditure
REMS	Risk evaluation and mitigation strategies
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
ROS	Review of systems
RR	Relative risk
RR	Risk ratio
RXR	Retinoid X receptors
RYGB	Roux-en-Y gastric bypass
SADI	Single anastomosis duodenoileostomy
SAGI	Single anastomosis gastroileostomy
SASI	Single anastomosis sleeve ileostomy
SBP	Systolic blood pressure
SCALE	Satiety and Clinical Adiposity-Liraglutide Evidence
SCFA	Short-chain fatty acid
SCN	Suprachiasmatic nucleus of the hypothalamus
Sct	Secretin
SctR	Secretin receptor
SD	Standard deviation
SGLT-1	Sodium-dependent glucose transporter 1
SGLT-2	Sodium-dependent glucose transporter-2
SH2B1	Src homology 2B adaptor protein 1
SHAPE	Screened Health Assessment and Pacer Evaluation trial
SHBG	Sex hormone-binding globulin

SIPS	Stomach intestinal pylorus sparing surgery
SL	Symmetrical lipomatosis
SMC	Smooth muscle cell
SNP	Single nucleotide polymorphism
SNRI	Serotonin norepinephrine reuptake inhibitor
SON	Supraoptic nucleus of the hypothalamus
SSRI	Selective serotonin reuptake inhibitor
SVR	Systemic vascular resistance
Т	Testosterone
T2DM	Type 2 diabetes mellitus
T3	Triiodothyronine
T4	Tetraiodothyronine or thyroxine
TC	Total cholesterol
TEE	Total energy expenditure
TES	The Endocrine Society
TFA	Trans-fatty acids
TG	Triacylglycerol
TG	Triglycerides
TGR5	The G-protein coupled receptor 5
TID	Three times daily
ТКА	Total knee arthroplasty:
TNF	Tumor necrosis factor
TOGA	Transoral gastroplasty
TOS	The Obesity Society
TRH	Thyrotropin-releasing hormone
TRT	Testosterone replacement therapy
TRUS	Transrectal ultrasound
TSH	Thyroid-stimulating hormone
TT	Total testosterone
TWIST	Twist-related protein
TZDs	Thiazolidinediones
UAG	Unacylated ghrelin
UCP	Uncoupling protein
UDCA	Ursodeoxycholic acid;
UK	United Kingdom
US	United States
USA	United States of America
USDA	United States Department of Agriculture
UTI	Urinary tract infection;
VAN	Vagal afferent neurons
VBG	Vertical banded gastroplasty
VEGF	Vascular endothelial growth factor
VLC	Very low-calorie
VLCMP	Very low-calorie meal plan
VLDL	Very low-density lipoprotein
	· · · · · ·

VLDL-C	Very low-density lipoprotein cholesterol
VMN	Ventromedial nucleus of the hypothalamus
VSG	Vertical sleeve gastrectomy
VTA	Ventral tegmental area
WAT	White adipose tissue
WC	Waist circumference
WCRF	World Cancer Research Fund
WHI	Women's Health Initiative
WHO	World Health Organization
WHR	Waist-to-hip ratio
WHtR	Waist-to-height ratio
YFAS	Yale Food Addiction Scale

Chapter 1 Bariatric Endocrinology

J. Michael Gonzalez-Campoy

Pearls of Wisdom

- Bariatric endocrinology developed from the knowledge that adipose tissue is an endocrine organ that actively participates in the regulation of metabolism and that it may become diseased (adiposopathy), thus contributing to the development of metabolic diseases.
- Adipose tissue may develop both anatomical and pathophysiological changes which lead to derangements of structure and function, collectively termed adiposopathy.
- Adipocytes both produce hormones with varied end-organ targets, and have receptors for many circulating hormones, establishing an active cross talk that maintains metabolic homeostasis. Adiposopathy leads to dysregulation of metabolic homeostasis, forcing other tissues to compensate, and leading to metabolic diseases when compensation is inadequate.
- Overweight, obesity, and adiposopathy are caused by both a genetic predisposition and environmental factors, and must be treated like any other chronic disease.
- The goals of bariatric endocrinology are to help individual patients decrease the burden of increased fat mass (treatment of adiposity) and to return adipose tissue function to normal (treatment of adiposopathy).

© Springer Nature Switzerland AG 2019

J. M. Gonzalez-Campoy

Minnesota Center for Obesity, Metabolism and Endocrinology, PA (MNCOME), Eagan, MN, USA e-mail: drmike@mncome.com

J. M. Gonzalez-Campoy et al. (eds.), *Bariatric Endocrinology*, https://doi.org/10.1007/978-3-319-95655-8_1

1.1 Introduction

Bariatric endocrinology first became a subject at the 2014 meeting of the American Association of Clinical Endocrinologists (AACE) in Las Vegas, Nevada. The coeditors of this textbook held a scientific session that defined obesity as an endocrine disease, adipose tissue as an endocrine organ, and the adipocyte as an endocrine cell. As such, obesity became not just a disease of excessive fat mass but rather a treatment target for clinical endocrinologists, a major goal of treatment becoming the correction of underlying adipose tissue dysfunction. This emerging position has been difficult to understand and accept by the vast majority of physicians who still think of success in the treatment of obesity as merely a reduction in poundage. This textbook of bariatric endocrinology was conceived after the 2014 AACE meeting to set the stage for future generations of clinicians who will have learned that adipose tissue dysfunction is a viable target of medical interventions, in addition to the traditional goal of decreasing fat mass. A brief history of how we got here is important.

In 1903, Dr. Perry published a paper entitled "The Nature and Treatment of Obesity" in the *California State Journal of Medicine*. He described obesity as "20 per cent to 40 per cent excess of weight over the normal of 2.05 pounds per inch of height, or 300 grammes per centimeter." In his paper, he explained that corpulence must be due to excessive muscular development, excessive fatty tissue, excessive water, myxedema, or pseudo-muscular hypertrophy. Prior to his publication, there are no indexed papers with obesity in the title in the National Library of Medicine. For the next half century, the view of adipose tissue became one of a storage organ. Yet the concept that obesity is a risk to health dates back to the writings of Hippocrates. And over this half century, progress was made identifying obesity as a disease.

In 1963, the emerging field of lipidology defined the role that adipose tissue had to play in lipid metabolism. Dr. Martha Vaughan and colleagues at the National Institutes of Health (NIH) documented that there is a hormone-sensitive triglyceride-splitting enzyme activity in adipose tissue. Hormone-sensitive lipase was shown to respond to epinephrine, leading to increased lipolysis and defining adipose tissue as a target of circulating hormones. Insulin was subsequently shown to inhibit this same enzyme, being strongly antilipolytic. In 1976, Dr. Lewis Williams and colleagues identified beta-adrenergic receptors in adipocytes, confirming that the adipocyte was indeed under hormonal control.

The first hints of a circulating factor that could affect fat mass came earlier. In 1959, parabiosis experiments done by Dr. Hervey at the University of Cambridge, in which paired rats were made to exchange blood and plasma by being surgically conjoined at the hip, provided an important clue to the presence of a circulating factor that could regulate energy stores. Damage to the ventromedial hypothalamus leads to obesity caused by overeating in rats. The damage prevents the ventromedial

hypothalamus from responding to physiological signals that suppress appetite. When a rat with a ventromedial hypothalamus lesion is conjoined to a normal rat, the rat with the lesion overeats and gains weight. The normal rat without a lesion, on the other hand, significantly decreases its caloric intake, losing weight and declining food even when made available. When both paired rats have damage to the ventromedial hypothalamus, both overfeed and gain weight. This was strong evidence of a circulating factor that decreases caloric intake by stimulating a hypothalamic target, thus decreasing fat mass. And it was also evidence that there is central regulation of energy balance.

In the late 1980s, adipose tissue was found to produce estrogen. Aromatase, the enzyme responsible for the synthesis of estrogen from testosterone, was identified in adipose tissue. This established the adipocyte as an endocrine cell capable of synthesizing estrogen. The degree of adiposity was subsequently related to the amount of estrogen in the circulation of patients with obesity and reproductive tract cancer. But aromatase and estrogen were not exclusive to adipose tissue.

In 1949, mice homozygous for the ob mutation (ob/ob mice) were first identified at the Jackson Laboratory. These mice exhibit uncontrolled feeding and develop obesity. In 1990, the ob gene was mapped. Subsequently, the gene product of the ob gene was identified as a hormone. When the gene product was given to ob/ob mice, it suppressed excessive feeding and promoted weight loss. Accordingly, this protein was named leptin, a derivative of the Greek root for "thin," *lepto*. Leptin was the first adipocyte-derived hormone (adipokine) to be discovered. A search of the Medi-Span database as of 2016 includes over 13,000 references with the word leptin in the title.

When leptin was characterized as a hormone made exclusively in adipose tissue, the search for other adipocyte products intensified. Adipocytes were also shown to produce adiponectin (which improves insulin sensitivity), adipsin (which is deficient in obesity), resistin (which causes insulin resistance), and visfatin (which has plasma glucose-lowering effects). Additionally, adipose tissue was shown to produce inflammatory cytokines including interleukin-6, tumor necrosis factor-alpha, and macrophage and monocyte chemoattractant protein-1, documenting its potential for macrophage infiltration and the development of inflammation.

By the late 1990s, the view of adipose tissue as a mere storage organ had been replaced by the contemporary perspective that it actively participates in the signaling that regulates the body's energy needs. The concept that adipose tissue may become diseased, or that adiposopathy may develop, was introduced into the medical literature by Dr. Harold Bays in 2004. Adiposopathy is now a treatment target in clinical endocrinology.

With a recognized worldwide obesity epidemic, there were over 64,000 publications on the subject by the end of 2015 (Fig. 1.1). This chapter reviews the epidemiology of obesity, its economic impact, its differential effect in different ethnic groups, the public health efforts to address it, and the principles of bariatric endocrinology that will help treat this disease.

Fig. 1.1 Number of publications with "obesity" in the title by year (1960–2015); Copyright MNCOME

1.2 The Obesity Epidemic in the United States of America (USA)

1.2.1 Adult USA Population

The National Health and Nutrition Examination Survey (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. It is funded by the Centers for Disease Control (CDC), through the National Center for Health Statistics (NCHS). The survey is unique in that it combines interviews and physical examinations. All counties in the United States are divided into 15 groups based on their characteristics. One county is selected from each large group, and together, they form the 15 counties in the NHANES surveys for each year. Within each of these 15 counties, smaller groups, with a large number of households in each group, are formed. Between 20 and 24 of these small groups are then selected. In each small group, all the houses and apartments are identified, and a sample of about 30 households is selected for interviewers to visit. A computer algorithm randomly selects some, all, or none of the household members.

NHANES data for USA adults ages 20 or higher from 1962 documented that 30.5% of the population had a body mass index (BMI) in the range of 25–29.9 kg/m², and 12.8% had a BMI of 30 kg/m² or more. By 2012, these numbers had risen to 33.9% and 35.1%, respectively. For this period, there was a 1.7-fold increase in the prevalence of people with a BMI of 30 kg/m² or more.