VICE PRESIDENT AND DIRECTOR

SENIOR EDITOR

ASSOCIATE DEVELOPMENT EDITOR

ASSISTANT DEVELOPMENT EDITOR

SENIOR MARKETING MANAGER

SENIOR CONTENT MANAGER

SENIOR PRODUCTION EDITOR

Petra Recter

Maria Guarascio

Laura Rama

Lindsey Myers

Alan Halfen

Svetlana Barskaya

Trish McFadden

SENIOR PHOTO EDITOR

SENIOR PRODUCT DESIGNER

SENIOR DESIGNER/

COVER DESIGNER

TEXT DESIGNER

COVER PHOTO

MaryAnn Price

Linda Muriello

Tom Nery

Brian Salisbury

Mark Nielsen

This book was set in 10/12 Janson Text LT Std by Aptara®, Inc. Printed and bound by RR Donnelley/Von Hoffmann. This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2017 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923 (website: www.copyright.com). Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, or online at: www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free-of-charge return shipping label are available at: www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy. Outside of the United States, please contact your local representative.

The inside back cover will contain printing identification and country of origin if omitted from this page. In addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1
Jerry Tortora is Professor of Biology and former Biology Coordinator at Bergen Community College in Paramus, New Jersey, where he teaches human anatomy and physiology as well as microbiology. He received his bachelor’s degree in biology from Fairleigh Dickinson University and his master’s degree in science education from Montclair State College. He has been a member of many professional organizations, including the Human Anatomy and Physiology Society (HAPS), the American Society of Microbiology (ASM), American Association for the Advancement of Science (AAAS), National Education Association (NEA), and the Metropolitan Association of College and University Biologists (MACUB).

Above all, Jerry is devoted to his students and their aspirations. In recognition of this commitment, Jerry was the recipient of MACUB’s 1992 President’s Memorial Award. In 1996, he received a National Institute for Staff and Organizational Development (NISOD) excellence award from the University of Texas and was selected to represent Bergen Community College in a campaign to increase awareness of the contributions of community colleges to higher education.

Jerry is the author of several best-selling science textbooks and laboratory manuals, a calling that often requires many additional hours per week beyond his teaching responsibilities. Nevertheless, he still makes time for four or five weekly aerobic workouts that include biking and running. He also enjoys attending college basketball and professional hockey games and performances at the Metropolitan Opera House.

To all my children: Lynne, Gerard Jr., Kenneth, Anthony, and Drew, whose love and support have been the wind beneath my wings. G.J.T.

Mark Nielsen is a Professor in the Department of Biology at the University of Utah. For the past thirty-one years he has taught anatomy, neuroanatomy, embryology, human dissection, comparative anatomy, and an anatomy teaching course to over 25,000 students. He developed the anatomy course for the physician assistant program at the University of Utah School of Medicine, where he taught for five years, and taught in the cadaver lab at the University of Utah School of Medicine. He developed the anatomy and physiology program for the Utah College of Massage Therapy, and his course materials are used by massage schools throughout the country. His graduate training is in comparative anatomy, and his anatomy expertise has a strong basis in dissection. He has prepared and participated in hundreds of dissections of both humans and other vertebrate animals. All his courses incorporate a cadaver-based component to the training with an outstanding exposure to cadaver anatomy. He is a member of the American Association of Anatomists (AAA), the Human Anatomy and Physiology Society (HAPS), and the American Association of Clinical Anatomists (AACA).

Mark has a passion for teaching anatomy and sharing his knowledge with his students. In addition to the many students to whom he has taught anatomy, he has trained and served as a mentor for over 1,200 students who have worked in his anatomy laboratory as teaching assistants. His concern for students and his teaching excellence have been acknowledged through numerous awards. He received the prestigious Presidential Teaching Scholar Award at the University of Utah for excellence in teaching and was an initial recipient of the Beacons of Excellence Award for developing exceptional programs for student mentoring. He is a five-time recipient of the University of Utah Student Choice Award for Outstanding Teacher and Mentor, a two-time winner of the Outstanding Teacher in the Physician Assistant Program, recipient of the American Massage Therapy Association Jerome Perlinski Teacher of the Year Award, and a two-time recipient of Who’s Who Among America’s Teachers.

He enjoys sports, photography, good food, traveling, and exploring with his lovely wife and playing with his grandchildren.

To my wonderful family, one and all.
Thank you for your never-ending support and love, it is dearly appreciated. M.T.N.
Welcome to your course in human anatomy! Many of you are taking this course because you hope to pursue a career in one of the allied health fields or medicine. Or perhaps you are simply interested in learning more about your own body. Whatever your motivation, *Principles of Human Anatomy 14e* and *WileyPLUS Learning Space* have all the content and tools that you need to successfully navigate what can be a very challenging course.

Over the past thirteen editions of this text we have made every effort to provide you with an accurate, clearly written, and expertly illustrated presentation of the structure of the human body; to offer insights into the connections between structure and function; and to explore the practical and relevant applications of anatomical knowledge to everyday life and career development. This fourteenth edition remains true to these goals. It distinguishes itself from prior editions with updated and new illustrations and greatly enhanced digital options.

The Art of Anatomy

Human anatomy is probably the most visual of all the sciences. Prior editions have been noted for the exceptionally clear figures that not only enhance the narrative, but stand on their own as a valuable study resource. This fourteenth edition has updated and revised many figures throughout to be more vibrant and more helpful than ever. In addition, some figures have been so extensively revised as to be considered all new; for example, note the new flow charts in the chapter on blood vessels. For those students who prefer to study online rather than in print, you will find that the presentation of figures within the text has been developed to be more interactive and easier to view on screen than ever before.

Engaging Digitally

The content in *Principles of Human Anatomy 14e* is completely integrated into *WileyPLUS Learning Space*. This allows you to create a personalized study plan, assess your progress along the way, and make deeper connections with the course material, your professor, and your classmates. This collaborative learning environment provides immediate insight into your strengths and problem areas with visual reports that highlight what’s most important for you to act on to help you master the course.

Many dynamic programs integrated into the course and the flow of the text help build your knowledge and understanding, and keep you motivated. For this edition we have added *new author videos* throughout. Developed and executed by Mark Nielsen, these videos are like a “master class” on selected topics. The videos feature a variety of animated visuals inclusive of figures, cadaver photographs from *Real Anatomy*, as well as diagrammatic visuals, to elucidate important concepts, to make critical connections among the details, and to ease the process of learning the language of anatomy.

WileyPLUS Learning Space also includes *ORION*—integrated adaptive practice that helps you build proficiency and uses your study time most effectively.
WileyPLUS with ORION delivers easy-to-use analytics that help educators and students see strengths and weaknesses to give learners the best chance of succeeding in the course.

Identify which students are struggling early in the semester.

Educators assess the real-time engagement and performance of each student to inform teaching decisions. Students always know what they need to work on.

Help students organize their learning and get the practice they need.

With ORION’s adaptive practice, students quickly understand what they know and don’t know. They can then decide to study or practice based on their proficiency.

Measure outcomes to promote continuous improvement.

With visual reports, it’s easy for both students and educators to gauge problem areas and act on what’s most important.

www.ORION.wileyplus.com
ACKNOWLEDGMENTS

Human Anatomy 14e and WileyPLUS Learning Space with ORION would not be possible without the help of many, particularly the academic colleagues who collaborated with us along the way. We are very grateful that Wiley has commissioned a board of advisors in anatomy and physiology to act as a sounding board on course issues, challenges, and solutions. In particular we thank those members of the board with expertise in the human anatomy course: Sandra Hutchinson, Santa Monica College; Wanda Hargroder, Louisiana State University; and Melaney Farr, Salt Lake Community College.

We wish to especially thank several academic colleagues for their contributions to the creation and integration of this text with WileyPLUS Learning Space. They include:

Kathleen Anderson, University of Iowa
Celina Bellanceau, University of South Florida
Evelyn Biluk, Lake Superior College
Lois Borek, Georgia State University
Stephen Burnett, Clayton State University
Kash Dutta, University of New England
Heather Dy, Long Beach Community College
Wanda Hargroder, Louisiana State University
Noah Harper, Idaho State University
Sandra Hutchinson, Santa Monica College
Cynthia Kincer, Wytheville Community College

Thomas Lancraft, St. Petersburg College
Jason Locklin, Temple College
Shawn Miller, University of Utah
Erin Morrey, Georgia Perimeter College
Gloria Nusse, San Francisco State University
Izak Paul, Mount Royal University

Finally, our hats are off to everyone at Wiley. We enjoy collaborating with this enthusiastic, dedicated, and talented team of publishing professionals. Our thanks to the entire team: Maria Guarascio, Senior Editor; Linda Muriello, Senior Product Designer; Laura Rama, Associate Development Editor; Lindsey Myers, Assistant Development Editor; Trish McFadden, Senior Production Editor; Mary Ann Price, Senior Photo Editor; Tom Nery, Designer; and Alan Halfen, Senior Marketing Manager.

GERARD J. TORTORA
Biology and Horticulture; Physical Sciences; Industrial Design Technologies S229
Bergen Community College
400 Paramus Road
Paramus, NJ 07656
gtortord@bergen.edu

MARK NIELSEN
Department of Biology
University of Utah
257 South 1400 East
Salt Lake City, UT 84112
marknielsen@bioscience.utah.edu
BRIEF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AN INTRODUCTION TO THE HUMAN BODY</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>CELLS</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>TISSUES</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>DEVELOPMENT</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>THE INTEGUMENTARY SYSTEM</td>
<td>118</td>
</tr>
<tr>
<td>6</td>
<td>BONE TISSUE</td>
<td>142</td>
</tr>
<tr>
<td>7</td>
<td>THE SKELETAL SYSTEM: THE AXIAL SKELETON</td>
<td>166</td>
</tr>
<tr>
<td>8</td>
<td>THE SKELETAL SYSTEM: THE APPENDICULAR SKELETON</td>
<td>216</td>
</tr>
<tr>
<td>9</td>
<td>JOINTS</td>
<td>250</td>
</tr>
<tr>
<td>10</td>
<td>MUSCULAR TISSUE</td>
<td>286</td>
</tr>
<tr>
<td>11</td>
<td>THE MUSCULAR SYSTEM</td>
<td>314</td>
</tr>
<tr>
<td>12</td>
<td>THE CARDIOVASCULAR SYSTEM: BLOOD</td>
<td>418</td>
</tr>
<tr>
<td>13</td>
<td>THE CARDIOVASCULAR SYSTEM: THE HEART</td>
<td>435</td>
</tr>
<tr>
<td>14</td>
<td>THE CARDIOVASCULAR SYSTEM: BLOOD VESSELS</td>
<td>463</td>
</tr>
<tr>
<td>15</td>
<td>THE LYMPHATIC (LYMPHOID) SYSTEM AND IMMUNITY</td>
<td>520</td>
</tr>
<tr>
<td>16</td>
<td>NERVOUS TISSUE</td>
<td>546</td>
</tr>
<tr>
<td>17</td>
<td>THE SPINAL CORD AND THE SPINAL NERVES</td>
<td>563</td>
</tr>
<tr>
<td>18</td>
<td>THE BRAIN AND THE CRANIAL NERVES</td>
<td>589</td>
</tr>
<tr>
<td>19</td>
<td>THE AUTONOMIC NERVOUS SYSTEM</td>
<td>636</td>
</tr>
<tr>
<td>20</td>
<td>SOMATIC SENSES AND MOTOR CONTROL</td>
<td>658</td>
</tr>
<tr>
<td>21</td>
<td>SPECIAL SENSES</td>
<td>678</td>
</tr>
<tr>
<td>22</td>
<td>THE ENDOCRINE SYSTEM</td>
<td>712</td>
</tr>
<tr>
<td>23</td>
<td>THE RESPIRATORY SYSTEM</td>
<td>735</td>
</tr>
<tr>
<td>24</td>
<td>THE DIGESTIVE SYSTEM</td>
<td>766</td>
</tr>
<tr>
<td>25</td>
<td>THE URINARY SYSTEM</td>
<td>810</td>
</tr>
<tr>
<td>26</td>
<td>THE REPRODUCTIVE SYSTEMS</td>
<td>835</td>
</tr>
<tr>
<td>27</td>
<td>SURFACE ANATOMY</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A: MEASUREMENTS</td>
<td>A-1</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B: ANSWERS</td>
<td>A-2</td>
</tr>
<tr>
<td></td>
<td>GLOSSARY</td>
<td>G-1</td>
</tr>
<tr>
<td></td>
<td>INDEX</td>
<td>I-1</td>
</tr>
</tbody>
</table>
CONTENTS

1 AN INTRODUCTION TO THE HUMAN BODY 1
1.1 Anatomy Defined 2
1.2 Levels of Body Organization and Body Systems 3
1.3 Life Processes 9
1.4 Basic Anatomical Terminology 9
Anatomical Position 9
Regional Names 9
Planes and Sections 10
1.5 Body Cavities 14
Thoracic and Abdominal Cavity Membranes 15
1.6 Abdominopelvic Regions and Quadrants 18
1.7 The Human Body and Disease 19
1.8 Aging 20
1.9 Medical Imaging 20
1.10 Measuring the Human Body 23
Chapter Review and Resource Summary 23 / Critical Thinking Questions 25 / Answers to Figure Questions 25

2 CELLS 26
2.1 A Generalized Cell 27
2.2 The Plasma Membrane 28
Structure of the Membrane 28
Functions of Membrane Proteins 29
Membrane Permeability 29
Transport Across the Plasma Membrane 29
Kinetic Energy Transport 30 / Transport by Transporter Proteins 30 / Transport in Vesicles 30
2.3 Cytoplasm 33
Cytosol 33
Organelles 34
Centrosome 35 / Cilia and Flagella 35 / Ribosomes 35 / Endoplasmic Reticulum (ER) 37 / Golgi Complex 37 / Lysosomes 39 / Peroxisomes 40 / Proteasomes 40 / Mitochondria 40
2.4 Nucleus 42
2.5 Cell Division 43
Somatic Cell Division 45
Interphase 45
Mitotic Phase 45
Control of Cell Destiny 47
Reproductive Cell Division 48
Meiosis 48
2.6 Cellular Diversity 51
2.7 Aging and Cells 52
Key Medical Terms Associated with Cells 54 / Chapter Review and Resource Summary 54 / Critical Thinking Questions 56 / Answers to Figure Questions 57

3 TISSUES 58
3.1 Types of Tissues 59
3.2 Cell Junctions 60
Tight Junctions 61
Adherens Junctions 61
Desmosomes 61
Hemidesmosomes 61
Gap Junctions 61
3.3 Comparison Between Epithelial and Connective Tissues 61
3.4 Epithelial Tissue 62
Classification of Surface Epithelium 63
Surface Epithelium 64
Glandular Epithelium 71
Structural Classification of Exocrine Glands 72 / Functional Classification of Exocrine Glands 72
3.5 Connective Tissue 73
General Features of Connective Tissue 73
Connective Tissue Cells 73
Connective Tissue Extracellular Matrix 75
Ground Substance 75 / Fibers 75
Classification of Connective Tissue 76
Embryonic Connective Tissue 76
Mature Connective Tissue 77
Connective Tissue Proper 77
Supporting Connective Tissue 81
Liquid Connective Tissue 84
3.6 Membranes 85
Epithelial Membranes 85
Mucous Membranes 85 / Serous Membranes 85 / Cutaneous Membrane 87
Synovial Membranes 87
3.7 Muscular Tissue 87
3.8 Nervous Tissue 89
3.9 Aging and Tissues 89
Key Medical Terms Associated with Tissues 90 / Chapter Review and Resource Summary 90 / Critical Thinking Questions 92 / Answers to Figure Questions 93

4 DEVELOPMENT 94
4.1 Principles of Development 95
4.2 Embryonic Period 96
First Week of Development 96
Fertilization 96 / Cleavage of the Zygote 97 / Blastocyst Formation 97 / Implantation 98
Second Week of Development 100
Development of the Trophoblast 100 / Development of the Bilaminar Embryonic Disc 100 / Development of the Amnion 100 / Development of the Yolk Sac 100 /
5 THE INTEGUMENTARY SYSTEM 118

5.1 Structure of the Skin 119
Epidermis 119
Stratum Basale 120 / Stratum Spinosum 122 / Stratum Granulosum 122 / Stratum Lucidum 123 / Stratum Corneum 123 / Keratinization and Growth of the Epidermis 123
Dermis 123
Blood Supply of the Integumentary System 125
The Structural Basis of Skin Color 125 / Tattooing and Body Piercing 126
Subcutaneous Layer or Hypodermis 126

5.2 Accessory Structures of the Skin 127
Hair 127
Anatomy of a Hair 128 / Hair Growth 129 /
Types of Hairs 130 / Hair Color 130
Skin Glands 130
Sebaceous Glands 130 / Sudoriferous Glands 131 / Ceruminous Glands 132
Nails 132

5.3 Types of Skin 134

5.4 Functions of the Skin 135

5.5 Development of the Integumentary System 136

5.6 Aging and the Integumentary System 138

Key Medical Terms Associated with the Integumentary System 139 / Chapter Review and Resource Summary 140 / Critical Thinking Questions 141 / Answers to Figure Questions 141

6 BONE TISSUE 142

6.1 Functions of Bone and the Skeletal System 143

6.2 Types of Bones 143

6.3 Anatomy of a Bone 144

6.4 Bone Surface Markings 145

6.5 Histology of Bone Tissue 146

Compact Bone Tissue 148
Spongy Bone Tissue 149

6.6 Blood and Nerve Supply of Bone 150

6.7 Bone Formation 151
Initial Bone Formation in an Embryo and Fetus 151
Intramembranous Ossification 151
Endochondral Ossification 153
Bone Growth During Infancy, Childhood, and Adolescence 154
Growth in Length 154 / Growth in Thickness 155
Remodeling of Bone 155

6.8 Fractures 158

6.9 Exercise and Bone Tissue 161

6.10 Aging and Bone Tissue 161

6.11 Factors Affecting Bone Growth 161

Key Medical Terms Associated with Bone Tissue 163 / Chapter Review and Resource Summary 163 / Critical Thinking Questions 165 / Answers to Figure Questions 165

7 THE SKELETAL SYSTEM: THE AXIAL SKELETON 166

7.1 Divisions of the Skeletal System 167

7.2 Skull 169
General Features and Functions 169
Nasal Septum 188
Orbits 188
Foramina 190
Unique Features of the Skull 190
Sutures 190 / Paranasal Sinuses 191 / Fontanels 191
Cranial Fossae 192
Age-related Changes in the Skull 194
Sexual Differences in the Skull 195

7.3 Hyoid Bone 196

7.4 Vertebral Column 197
Normal Curves of the Vertebral Column 197
Intervertebral Discs 197
Parts of a Typical Vertebra 199
Vertebral Body 199 / Vertebral Arch 199 / Processes 200
Regions of the Vertebral Column 201
Age-related Changes in the Vertebral Column 201

7.5 Thorax 210

Key Medical Terms Associated with the Axial Skeleton 214 / Chapter Review and Resource Summary 214 / Critical Thinking Questions 215 / Answers to Figure Questions 215

8 THE SKELETAL SYSTEM: THE APPENDICULAR SKELETON 216

8.1 Skeleton of the Upper Limb 217

8.2 Skeleton of the Lower Limb 230

8.3 False and True Pelves 235

8.4 Comparison of Female and Male Pelves 236
CONTENTS

8.5 Comparison of Pectoral and Pelvic Girdles 236
8.6 Development of the Skeletal System 246

Key Medical Terms Associated with Appendicular Skeleton 248 / Chapter Review and Resource Summary 248 / Critical Thinking Questions 249 / Answers to Figure Questions 249

9 JOINTS 250
9.1 Joint Classifications 251
Ligaments 251
9.2 Fibrous Joints 252
Sutures 252
Syndesmoses 253
Interosseous Membranes 253
9.3 Cartilaginous Joints 253
Synchondroses 253
Symphyses 253
Epiphyseal Cartilages 253
9.4 Synovial Joints 254
Structure of Synovial Joints 254
Articular Capsule 254 / Synovial Fluid 255 / Accessory Ligaments, Articular Discs, and Labra 255 / Nerve and Blood Supply 256
Bursae and Tendon Sheaths 256
9.5 Types of Movements at Synovial Joints 256
Gliding 256
Angular Movements 257
Rotation 258
Special Movements 259
9.6 Types of Synovial Joints 261
Plane Joints 261
Hinge Joints 261
Pivot Joints 261
Condyloid Joints 261
Saddle Joints 263
Ball-and-Socket Joints 263
9.7 Factors Affecting Contact and Range of Motion at Synovial Joints 264
9.8 Selected Joints of the Body 265
9.9 Aging and Joints 281

Key Medical Terms Associated with Joints 283 / Chapter Review and Resource Summary 283 / Critical Thinking Questions 284 / Answers to Figure Questions 285

10 MUSCULAR TISSUE 286
10.1 Overview of Muscular Tissue 287
Types of Muscular Tissue 287
Functions of Muscular Tissue 287
Properties of Muscular Tissue 287
10.2 Skeletal Muscle Tissue Structure 288
Gross Anatomy of a Skeletal Muscle 288
Connective Tissue Coverings 288

Nerve and Blood Supply 290
Microscopic Anatomy of a Skeletal Muscle Fiber (Cell) 290
Sarcolemma, T Tubules, and Sarcomplasm 290 / Myofibrils and Sarcomplasmic Reticulum 291 / Filaments and the Sarcomere 292
Muscle Proteins 293
10.3 Skeletal Muscle Tissue Function 296
Contraction and Relaxation of Skeletal Muscle Fibers 296
Sliding Filament Mechanism 296 / The Neuromuscular Junction 296 / The Contraction Cycle 299 / Excitation–Contraction Coupling 300
Muscle Tone 301
Isotonic and Isometric Contractions 302
10.4 Types of Skeletal Muscle Fibers 303
Slow Oxidative Fibers 303
Fast Oxidative-Glycolytic Fibers 303
Fast Glycolytic Fibers 303
10.5 Exercise and Skeletal Muscle Tissue 305
Effective Stretching 305
Strength Training 305
10.6 Cardiac Muscle Tissue 305
10.7 Smooth Muscle Tissue 307
10.8 Development of Muscles 309
10.9 Aging and Muscular Tissue 310

Key Medical Terms Associated with Muscular Tissue 310 / Chapter Review and Resource Summary 310 / Critical Thinking Questions 312 / Answers to Figure Questions 313

11 THE MUSCULAR SYSTEM 314
11.1 How Skeletal Muscles Produce Movements 315
Muscle Attachment Sites: Origin and Insertion 315
Lever Systems 316
Effects of Fascicle Arrangement 318
Muscle Actions 319
Coordination Among Muscles 319
Structure and Function of Muscle Groups 319
11.2 How Skeletal Muscles Are Named 320
11.3 Principal Skeletal Muscles 320

Key Medical Terms Associated with the Muscular System 415 / Chapter Review and Resource Summary 416 / Critical Thinking Questions 417 / Answers to Figure Questions 417

12 THE CARDIOVASCULAR SYSTEM: BLOOD 418
12.1 Functions of Blood 419
12.2 Physical Characteristics of Blood 419
12.3 Components of Blood 419
Blood Plasma 421
Formed Elements 421
12.4 Formation of Blood Cells 422
12.5 Red Blood Cells 425
RBC Anatomy 425
RBC Functions 425
RBC Life Cycle 426
Erythropoiesis: Production of RBCs 426
Blood Group Systems 427
12.6 White Blood Cells 428
WBC Anatomy and Types 428
Granular Leukocytes 428 / Agranular Leukocytes 428
WBC Functions 428
12.7 Platelets 430
12.8 Stem Cell Transplants from Bone Marrow and Cord-Blood 431
Key Medical Terms Associated with Blood 432 / Chapter Review and Resource Summary 433 / Critical Thinking Questions 434 / Answers to Figure Questions 434

13 THE CARDIOVASCULAR SYSTEM: THE HEART 435
13.1 Location and Surface Projection of the Heart 436
13.2 Structure and Function of the Heart 438
Pericardium 438
Layers of the Heart Wall 440
Chambers of the Heart 440
Right Atrium 442 / Right Ventricle 444 / Left Atrium 444 / Left Ventricle 444
Myocardial Thickness and Function 444
Fibrous Skeleton of the Heart 445
Heart Valves 445
Atrioventricular Valves 445 / Semilunar Valves 447
13.3 Circulation of Blood 447
Systemic and Pulmonary Circulations 447
Coronary Circulation 448
Coronary Arteries 448 / Coronary Veins 450
13.4 Cardiac Conduction System and Innervation 451
Cardiac Conduction System 451
Cardiac Nerves 453
13.5 Cardiac Cycle (Heartbeat) 453
13.6 Heart Sounds 453
13.7 Exercise and the Heart 454
13.8 Development of the Heart 458
Key Medical Terms Associated with the Heart 460
Chapter Review and Resource Summary 460
Critical Thinking Questions 462
Answers to Figure Questions 462

14 THE CARDIOVASCULAR SYSTEM: BLOOD VESSELS 463
14.1 Anatomy of Blood Vessels 464
Basic Structure of a Blood Vessel 464
Tunica Interna (Intima) 464 / Tunica Media 466 / Tunica Externa 466
Arteries 466
Elastic Arteries 466 / Muscular Arteries 466
Anastomoses 467
Arterioles 467
Capillaries 468
Venules 469
Veins 469
Blood Distribution 471
14.2 Circulatory Routes—Systemic Circulation 472
14.3 Circulatory Routes—Hepatic Portal Circulation 511
14.4 Circulatory Routes—Pulmonary Circulation 512
14.5 Circulatory Routes—Fetal Circulation 513
14.6 Development of Blood Vessels and Blood 515
14.7 Aging and the Cardiovascular System 516
Key Medical Terms Associated with Blood Vessels 517 / Chapter Review and Resource Summary 518 / Critical Thinking Questions 519 / Answers to Figure Questions 519

15 THE LYMPHATIC (LYMPHOID) SYSTEM AND IMMUNITY 520
15.1 The Concept of Immunity 521
15.2 Lymphatic System Structure and Functions 521
Structure 521
Functions 521
15.3 Lymphatic Vessels and Lymph Circulation 523
Lymphatic Capillaries 523
Lymph Trunks and Ducts 524
Formation and Flow of Lymph 524
15.4 Lymphatic Organs and Tissues 526
Thymus 526
Lymph Nodes 527
Spleen 529
Lymphatic Nodules 531
15.5 Principal Groups of Lymph Nodes 531
15.6 Development of Lymphatic Tissues 542
15.7 Aging and the Lymphatic System 542
Key Medical Terms Associated with the Lymphatic System and Immunity 544 / Chapter Review and Resource Summary 544 / Critical Thinking Questions 545 / Answers to Figure Questions 545

16 NERVOUS TISSUE 546
16.1 Overview of the Nervous System 547
Structures of the Nervous System 547
Organization of the Nervous System 547
Anatomical Organization 547 / Functional Organization 548
CONTENTS

16.2 Histology and Functions of Neurons 548
Neurons 549
 Parts of a Neuron 549 / Cell Body 549 / Nerve Fibers 550
Synapses 552
 Neuromuscular Junction 552 / Synapses Between Neurons 552 / Neurotransmitters 553 / Structural Diversity in Neurons 553
16.3 Histology and Function of Neuroglia 555
Neuroglia of the CNS 555
Neuroglia of the PNS 556
Myelination 556
Gray and White Matter 558
16.4 Neural Circuits 558
16.5 Regeneration and Neurogenesis 560
Key Medical Terms Associated with Nervous Tissue 560 / Chapter Review and Resource Summary 561 / Critical Thinking Questions 562 / Answers to Figure Questions 562

17 THE SPINAL CORD AND THE SPINAL NERVES 563
17.1 Spinal Cord Anatomy 564
Protective Structures 564 / Vertebral Column 564 / Meninges 564
External Anatomy of the Spinal Cord 565
Internal Anatomy of the Spinal Cord 568
17.2 Spinal Nerves 569
Structure of a Single Nerve 569
Organization of Spinal Nerves 571
Branches of Spinal Nerves 572
 Intercostal Nerves 572 / Plexuses 572
Dermatomes Versus Cutaneous Fields 573
17.3 Spinal Cord Functions 584
Sensory and Motor Tracts 584
Reflexes and Reflex Arcs 585
Key Medical Terms Associated with the Spinal Cord and the Spinal Nerves 586 / Chapter Review and Resource Summary 587 / Critical Thinking Questions 588 / Answers to Figure Questions 588

18 THE BRAIN AND THE CRANIAL NERVES 589
18.1 Development and General Structure of the Brain 590
Brain Development 590
Major Parts of the Brain 592
18.2 Protection and Blood Supply 593
Protective Coverings of the Brain 593
Cerebrospinal Fluid 594
 Formation of CSF in the Ventricles 594 / Functions of CSF 595 / Circulation of CSF 595
Brain Blood Flow and the Blood–Brain Barrier 598
18.3 The Brainstem and Reticular Formation 599
Medulla Oblongata 599
Pons 601
Midbrain 601
Reticular Formation 603
18.4 The Cerebellum 604
18.5 The Diencephalon 604
Thalamus 606
Hypothalamus 607
Epithalamus 608
Circumventricular Organs 608
18.6 The Cerebrum 608
Structure of the Cerebrum 609
Cerebral White Matter 610
Basal Nuclei 611
The Limbic System 612
18.7 Functional Organization of the Cerebral Cortex 614
Sensory Areas 614
Motor Areas 615
Association Areas 615
Hemispheric Lateralization 617
Memory 617
Brain Waves 617
18.8 Aging and the Nervous System 618
18.9 Cranial Nerves 618
Key Medical Terms Associated with the Brain and the Cranial Nerves 633 / Chapter Review and Resource Summary 633 / Critical Thinking Questions 635 / Answers to Figure Questions 635

19 THE AUTONOMIC NERVOUS SYSTEM 636
19.1 Comparison of Somatic and Autonomic Nervous Systems 637
Somatic Nervous System 637
Autonomic Nervous System 637
Comparison of Somatic and Autonomic Motor Neurons 638
19.2 Anatomy of Autonomic Motor Pathways 639
Understanding Autonomic Motor Pathways 639
 Migration of the Neural Crest Tissue 641
Shared Anatomical Components
 of an Autonomic Motor Pathway 641
Motor Neurons and Autonomic Ganglia 641 / Autonomic Plexuses 641
19.3 Structure of the Sympathetic Division 643
Sympathetic Preganglionic Neurons 643
Sympathetic Ganglia and Postganglionic Neurons 645
 Sympathetic Trunk Ganglia 645 / Prevertebral Ganglia 646
19.4 Structure of the Parasympathetic Division 646
Parasympathetic Preganglionic Neurons 646
Parasympathetic Ganglia and Postganglionic Neurons 648
19.5 ANS Neurotransmitters and Receptors 650
Cholinergic Neurons and Receptors 650
Adrenergic Neurons and Receptors 651
19.6 Functions of the ANS 651
 Sympathetic Responses 651
 Parasympathetic Responses 652
19.7 Integration and Control of Autonomic Functions 655
 Autonomic Reflexes 655
 Autonomic Control by Higher Centers 655
Key Medical Terms Associated with the Autonomic Nervous System 655 / Chapter Review and Resource Summary 656 / Critical Thinking Questions 657 / Answers to Figure Questions 657

20 SOMATIC SENSES AND MOTOR CONTROL 658
20.1 Overview of Sensations 659
 Definition of Sensations 659
 Characteristics of Sensations 659
 Classification of Sensations 659
 Types of Sensory Receptors 659
20.2 Somatic Sensations 660
 Tactile Sensations 661
 Touch 661 / Pressure 661 / Vibration 662 / Itch and Tickle 662
 Thermal Sensations 662
 Pain Sensations 662
 Types of Pain 662 / Localization of Pain 662
 Proprioceptive Sensations 663
 Muscle Spindles 663 / Tendon Organs 665 / Joint Kinesthetic Receptors 665
20.3 Somatic Sensory Pathways 666
 Posterior Column–Medial Lemniscus Pathway to the Cerebral Cortex 666
 Anterolateral (Spinothalamic) Pathways to the Cerebral Cortex 667
 Mapping the Primary Somatosensory Area 667
 Somatic Sensory Pathways to the Cerebellum 668
20.4 Somatic Motor Pathways 669
 Origin of Motor Pathways 670
 Direct Motor Pathways 670
 Indirect Motor Pathways 673
 Roles of the Basal Nuclei in Movement 673
 Roles of the Cerebellum in Movement 673
 Role of the Brainstem in Movement 673
 Vestibular Nuclei in the Medulla and Pons 673 / Reticular Formation in the Medulla, Pons, and Midbrain 673 / Superior Colliculus in the Midbrain 674
20.5 Integration of Sensory Input and Motor Output 675
Key Medical Terms Associated with Somatic Senses and Motor Control 675 / Chapter Review and Resource Summary 675 / Critical Thinking Questions 677 / Answers to Figure Questions 677

21 SPECIAL SENSES 678
21.1 Olfaction: Sense of Smell 679
 Anatomy of Olfactory Receptors 679
 The Olfactory Pathway 681
21.2 Gustation: Sense of Taste 681
 Anatomy of Gustatory Receptors 681
 The Gustatory Pathway 683
21.3 Vision 683
 Accessory Structures of the Eye 683
 Eyelids 683 / Eyelashes and Eyebrows 685 / The Lacrimal Apparatus 685 / Extrinsic Eye Muscles 685
 Anatomy of the Eyeball 685
 Fibrous Tunic 685 / Vascular Tunic 685 / Retina 687 / Lens 690 / Interior of the Eyeball 690
 The Visual Pathway 691
 Processing of Visual Input in the Retina 692 / Pathway in the Brain 692
21.4 Hearing and Equilibrium 693
 Anatomy of the Ear 693
 External (Outer) Ear 693 / Middle Ear 694 / Internal (Inner) Ear 695
 Mechanism of Hearing 699
 The Auditory Pathway 701
 Mechanism of Equilibrium 702
 Otolithic Organs: Saccule and Utricle and Static Equilibrium 702 / Semicircular Ducts and Dynamic Equilibrium 702
 Equilibrium Pathways 705
21.5 Development of the Eyes and Ears 707
 Development of the Eyes 707
 Development of the Ears 708
21.6 Aging and the Special Senses 709
Key Medical Terms Associated with Special Senses 709 / Chapter Review and Resource Summary 710 / Critical Thinking Questions 711 / Answers to Figure Questions 711

22 THE ENDOCRINE SYSTEM 712
22.1 Endocrine Glands Defined 713
22.2 Hormones 713
22.3 Hypothalamus and Pituitary Gland 715
 Anterior Pituitary 716
 Posterior Pituitary 718
22.4 Pineal Gland and Thymus 719
22.5 Thyroid Gland and Parathyroid Glands 720
22.6 Adrenal Glands 723
 Adrenal Cortex 723
 Adrenal Medulla 725
22.7 Pancreas 726
22.8 Ovaries and Testes 728
22.9 Other Endocrine Tissues 729
22.10 Development of the Endocrine System 730
22.11 Aging and the Endocrine System 731
Key Medical Terms Associated with the Endocrine System 732 / Chapter Review and Resource Summary 732 / Critical Thinking Questions 734 / Answers to Figure Questions 734
23 THE RESPIRATORY SYSTEM 735

23.1 Respiratory System Anatomy 736
Nose 736
Pharynx 740

23.2 Upper Respiratory System Anatomy 736
Nose 736
Pharynx 740

23.3 Lower Respiratory System Anatomy 741
Larynx 741
The Structures of Voice Production 743
Trachea 744
Bronchi 745
Lungs 749
Lobes, Fissures, and Lobules 751 / Alveolar Sacs and Alveoli 753 / Blood Supply to the Lungs 755
Patency of the Respiratory System 755

23.4 Mechanics of Pulmonary Ventilation (Breathing) 757
Inhalation 757
Exhalation 757

23.5 Regulation of Breathing 758
Role of the Respiratory Center 758
Medullary Respiratory Center 759 / Pontine Respiratory Group 760
Regulation of the Respiratory Center 760
Cortical Influences on Breathing 760
Chemoreceptor Regulation of Breathing 761 / Role of Lung Inflation in Stimulation of Breathing 761

23.6 Exercise and the Respiratory System 761

23.7 Development of the Respiratory System 762

23.8 Aging and the Respiratory System 763

Key Medical Terms Associated with the Respiratory System 763 / Chapter Review and Resource Summary 764 / Critical Thinking Questions 765 / Answers to Figure Questions 765

24 THE DIGESTIVE SYSTEM 766

24.1 Overview of the Digestive System 767

24.2 Layers of the GI Tract 768
Mucosa 768
Submucosa 769
Muscularis 769
Serosa 770

24.3 Peritoneum 770

24.4 Mouth 772
Salivary Glands 773
Tongue 775
Teeth 775

24.5 Pharynx 779

24.6 Esophagus 779
Histology of the Esophagus 779
Functions of the Esophagus 780

24.7 Stomach 781
Anatomy of the Stomach 781
Histology of the Stomach 783
Functions of the Stomach 784

24.8 Pancreas 786
Anatomy of the Pancreas 786
Histology of the Pancreas 787
Functions of the Pancreas 787

24.9 Liver and Gallbladder 788
Anatomy of the Liver and Gallbladder 788
Histology of the Liver and Gallbladder 789
Blood and Nerve Supply of the Liver and Gallbladder 792
Functions of the Liver and Gallbladder 793

24.10 Small Intestine 793
Anatomy of the Small Intestine 793
Histology of the Small Intestine 794
Functions of the Small Intestine 797

24.11 Large Intestine 800
Anatomy of the Large Intestine 800
Histology of the Large Intestine 802
Functions of the Large Intestine 803

24.12 Development of the Digestive System 805

24.13 Aging and the Digestive System 806

Key Medical Terms Associated with the Digestive System 806 / Chapter Review and Resource Summary 807 / Critical Thinking Questions 809 / Answers to Figure Questions 809

25 THE URINARY SYSTEM 810

25.1 Overview of the Urinary System 811

25.2 Anatomy of the Kidneys 813
External Anatomy of the Kidneys 813
Internal Anatomy of the Kidneys 813
Blood and Nerve Supply of the Kidneys 816

25.3 The Nephron 817
Parts of a Nephron 817
Histology of the Nephron and Collecting Duct 819
Glomerular Capsule 821 / Renal Tubule and Collecting Duct 821

25.4 Functions of Nephrons 822
Glomerular Filtration 823
Tubular Reabsorption 824
Tubular Secretion 824

25.5 Urine Transportation, Storage, and Elimination 825
Ureters 825
Urinary Bladder 828
Urethra 829

25.6 Development of the Urinary System 831

25.7 Aging and the Urinary System 832

Key Medical Terms Associated with the Urinary System 832 / Chapter Review and Resource Summary 833 / Critical Thinking Questions 834 / Answers to Figure Questions 834
26 THE REPRODUCTIVE SYSTEMS 835
26.1 Male Reproductive System 836
Scrotum 836
Testes 838
Sperm 842
Reproductive System Ducts in Males 843
Ducts of the Testis 843 / Epididymis 843 / Ductus Deferens 844 / Ejaculatory Ducts 845 / Urethra 845
Spermatic Cord 845
Accessory Sex Glands in Males 845
Seminal Vesicles 845 / Prostate 845 / Bulbourethral Glands 845
Semen 847
Penis 847

26.2 Female Reproductive System 849
Ovaries 849
Histology of the Ovaries 851 / Oogenesis and Follicular Development 853
Uterine Tubes 856
Uterus 859
Vagina 861
Vulva 862
Perineum 863
Mammary Glands 866

Menstrual Phase 867
Events in the Ovaries 867 / Events in the Uterus 867
Preovulatory Phase 868
Events in the Ovaries 868 / Events in the Uterus 868
Ovulation 868
Postovulatory Phase 868
Events in the Ovaries 868 / Events in the Uterus 870

26.4 Birth Control Methods and Abortion 870
Birth Control Methods 870
Surgical Sterilization 870 / Non-incisional Sterilization 870 / Hormonal Methods 871 / Intrauterine Devices 871 / Spermicides 871 / Barrier Methods 871 / Periodic Abstinence 872
Abortion 872

26.5 Development of the Reproductive Systems 872
26.6 Aging and the Reproductive Systems 874

Key Medical Terms Associated with the Reproductive Systems 875 / Chapter Review and Resource Summary 876 / Critical Thinking Questions 878 / Answers to Figure Questions 878

27 SURFACE ANATOMY 880
27.1 Overview of Surface Anatomy 881

Chapter Review and Resource Summary 903 / Critical Thinking Questions 904 / Answers to Figure Questions 904

<table>
<thead>
<tr>
<th>CHAPTER 15</th>
<th>Allergic Reactions 523</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Edema 526</td>
</tr>
<tr>
<td></td>
<td>Ruptured Spleen 530</td>
</tr>
<tr>
<td></td>
<td>Tonsillitis 531</td>
</tr>
<tr>
<td></td>
<td>Breast Cancer and Metastasis 536</td>
</tr>
<tr>
<td></td>
<td>AIDS: Acquired Immunodeficiency Syndrome 542</td>
</tr>
<tr>
<td>CHAPTER 16</td>
<td>Neurotoxins and Local Anesthetics 551</td>
</tr>
<tr>
<td></td>
<td>Depression 553</td>
</tr>
<tr>
<td></td>
<td>Multiple Sclerosis 559</td>
</tr>
<tr>
<td>CHAPTER 17</td>
<td>Spinal Cord Compression 565</td>
</tr>
<tr>
<td></td>
<td>Spinal Tap 567</td>
</tr>
<tr>
<td></td>
<td>Spinal Cord Injury 570</td>
</tr>
<tr>
<td></td>
<td>Spinal Nerve Root Damage 573</td>
</tr>
<tr>
<td></td>
<td>Shingles 574</td>
</tr>
<tr>
<td></td>
<td>Injuries to the Phrenic Nerves 576</td>
</tr>
<tr>
<td></td>
<td>Injuries to Nerves Emerging from the Brachial Plexus 579</td>
</tr>
<tr>
<td></td>
<td>Injuries to the Lumbar Plexus 581</td>
</tr>
<tr>
<td></td>
<td>Injury to the Sciatic Nerve 583</td>
</tr>
<tr>
<td>CHAPTER 18</td>
<td>Meningitis 593</td>
</tr>
<tr>
<td></td>
<td>Hydrocephalus 597</td>
</tr>
<tr>
<td></td>
<td>Cerebrovascular Accident and Transient Ischemic Attack 598</td>
</tr>
<tr>
<td></td>
<td>Injury to the Medulla 600</td>
</tr>
<tr>
<td></td>
<td>Ataxia 604</td>
</tr>
<tr>
<td></td>
<td>Chronic Traumatic Encephalopathy (CTE) 613</td>
</tr>
<tr>
<td></td>
<td>Aphasia 616</td>
</tr>
<tr>
<td></td>
<td>Alzheimer's Disease 618</td>
</tr>
<tr>
<td></td>
<td>Anosmia 620</td>
</tr>
<tr>
<td></td>
<td>Anopia 621</td>
</tr>
<tr>
<td></td>
<td>Strabismus, Ptosis, and Diplopia 623</td>
</tr>
<tr>
<td></td>
<td>Trigeminal Neuralgia 625</td>
</tr>
<tr>
<td></td>
<td>Bell's Palsy 626</td>
</tr>
<tr>
<td></td>
<td>Vertigo, Ataxia, and Nystagmus 627</td>
</tr>
<tr>
<td></td>
<td>Dysphagia, Apyralgia, and Ageusia 628</td>
</tr>
<tr>
<td></td>
<td>Vagal Neuropathy, Dysphagia, and Tachycardia 629</td>
</tr>
<tr>
<td></td>
<td>Paralysis of the Sternoclidomastoid and Trapezius Muscles 630</td>
</tr>
<tr>
<td></td>
<td>Dysarthria and Dysphagia 631</td>
</tr>
<tr>
<td>CHAPTER 19</td>
<td>Autonomic Dysreflexia 651</td>
</tr>
<tr>
<td></td>
<td>Drugs and Receptor Selectivity 652</td>
</tr>
<tr>
<td></td>
<td>Raynaud Phenomenon 654</td>
</tr>
<tr>
<td>CHAPTER 20</td>
<td>Phantom Limb Sensation 662</td>
</tr>
<tr>
<td></td>
<td>Acupuncture 663</td>
</tr>
<tr>
<td></td>
<td>Syphilis 669</td>
</tr>
<tr>
<td></td>
<td>Paralysis 670</td>
</tr>
<tr>
<td></td>
<td>Amyotrophic Lateral Sclerosis (ALS) 671</td>
</tr>
<tr>
<td></td>
<td>Parkinson's Disease 674</td>
</tr>
<tr>
<td>CHAPTER 21</td>
<td>Hyposmia 681</td>
</tr>
<tr>
<td></td>
<td>Taste Aversion 683</td>
</tr>
<tr>
<td></td>
<td>Detached Retina 687</td>
</tr>
<tr>
<td></td>
<td>Major Causes of Blindness 689</td>
</tr>
<tr>
<td></td>
<td>Presbyopia 690</td>
</tr>
<tr>
<td></td>
<td>LASIK 691</td>
</tr>
<tr>
<td></td>
<td>Otitis Media 695</td>
</tr>
<tr>
<td></td>
<td>Ménière's Disease 697</td>
</tr>
<tr>
<td></td>
<td>Cochlear Implant 698</td>
</tr>
<tr>
<td></td>
<td>Motion Sickness 704</td>
</tr>
<tr>
<td></td>
<td>Deafness 706</td>
</tr>
<tr>
<td>CHAPTER 22</td>
<td>Blocking Hormone Receptors 714</td>
</tr>
<tr>
<td></td>
<td>Disorders of the Endocrine System 718</td>
</tr>
<tr>
<td></td>
<td>Thyroid Gland Disorders and Parathyroid Gland Disorders 723</td>
</tr>
<tr>
<td></td>
<td>Adrenal Gland Disorders 725</td>
</tr>
<tr>
<td></td>
<td>Diabetes Mellitus 728</td>
</tr>
<tr>
<td></td>
<td>Stress, Hormones, and Disease 729</td>
</tr>
<tr>
<td>CHAPTER 23</td>
<td>Rhinoplasty 736</td>
</tr>
<tr>
<td></td>
<td>Tonsillectomy 739</td>
</tr>
<tr>
<td></td>
<td>Coryza, Seasonal Influenza, and H1N1 Influenza 741</td>
</tr>
<tr>
<td></td>
<td>Laryngitis and Cancer of the Larynx 744</td>
</tr>
<tr>
<td></td>
<td>Tracheotomy and Intubation 744</td>
</tr>
<tr>
<td></td>
<td>Asthma and Chronic Bronchitis 748</td>
</tr>
<tr>
<td></td>
<td>Pleurisy 749</td>
</tr>
<tr>
<td></td>
<td>Pneumothorax and Hemothorax 751</td>
</tr>
<tr>
<td></td>
<td>Malignant Mesothelioma 751</td>
</tr>
<tr>
<td></td>
<td>Effects of Smoking on the Respiratory System 753</td>
</tr>
<tr>
<td></td>
<td>Emphysema 754</td>
</tr>
<tr>
<td>CHAPTER 24</td>
<td>Peritonitis 772</td>
</tr>
<tr>
<td></td>
<td>Mumps 775</td>
</tr>
<tr>
<td></td>
<td>Root Canal Therapy 776</td>
</tr>
<tr>
<td></td>
<td>Periodontal Disease and Dental Caries 776</td>
</tr>
<tr>
<td></td>
<td>Gastroesophageal Reflux Disease 781</td>
</tr>
<tr>
<td></td>
<td>Pylorospasm and Pyloric Stenosis 781</td>
</tr>
<tr>
<td></td>
<td>Vomiting 785</td>
</tr>
<tr>
<td></td>
<td>Pancreatitis and Pancreatic Cancer 787</td>
</tr>
<tr>
<td></td>
<td>Hepatitis 789</td>
</tr>
<tr>
<td></td>
<td>Liver Function Tests 792</td>
</tr>
<tr>
<td></td>
<td>Gallstones 793</td>
</tr>
<tr>
<td></td>
<td>Gastroenteritis 794</td>
</tr>
<tr>
<td></td>
<td>Lactose Intolerance 798</td>
</tr>
<tr>
<td></td>
<td>Peptic Ulcer Disease 799</td>
</tr>
<tr>
<td></td>
<td>Bariatric Surgery 800</td>
</tr>
<tr>
<td></td>
<td>Colonoscopy 801</td>
</tr>
<tr>
<td></td>
<td>Diarrhea and Constipation 805</td>
</tr>
<tr>
<td></td>
<td>Colorectal Cancer 806</td>
</tr>
<tr>
<td>CHAPTER 25</td>
<td>Nephropathy 813</td>
</tr>
<tr>
<td></td>
<td>Kidney Transplant 820</td>
</tr>
<tr>
<td></td>
<td>Glomerulonephritis 821</td>
</tr>
<tr>
<td></td>
<td>Diuretics 823</td>
</tr>
<tr>
<td></td>
<td>Renal Failure 824</td>
</tr>
<tr>
<td></td>
<td>Dialysis 825</td>
</tr>
<tr>
<td></td>
<td>Cystoscopy 827</td>
</tr>
<tr>
<td></td>
<td>Incontinence 828</td>
</tr>
<tr>
<td></td>
<td>Uralysis 829</td>
</tr>
<tr>
<td>CHAPTER 26</td>
<td>Cryptorchidism 836</td>
</tr>
<tr>
<td></td>
<td>Vasectomy 838</td>
</tr>
<tr>
<td></td>
<td>Prostatitis and Prostate Cancer 847</td>
</tr>
<tr>
<td></td>
<td>Uterine Prolapse 858</td>
</tr>
<tr>
<td></td>
<td>Endometriosis 859</td>
</tr>
<tr>
<td></td>
<td>Cervical Cancer 860</td>
</tr>
<tr>
<td></td>
<td>Episiotomy 863</td>
</tr>
<tr>
<td></td>
<td>Breast Cancer 864</td>
</tr>
<tr>
<td></td>
<td>Sexually Transmitted Diseases 869</td>
</tr>
</tbody>
</table>
INTRODUCTION

You are about to begin a study of the human body to learn how it is organized and how it functions. In order to understand what happens when the body is injured, diseased, or placed under stress, you must know how it is put together and how its different parts work. Just as an auto mechanic must be familiar with the details of the structure and function of a car, health-care professionals and others who work in human performance and care professions must have intimate knowledge of the structures and functions of the human body. This knowledge can be one of your most effective tools. Much of what you study in this chapter will help you understand how anatomists visualize the body, and the basic anatomical vocabulary presented here will help you describe the body in a language common to both scientists and professionals.

Did you ever wonder why an autopsy is performed?

You can find out on page 19.
1.1 ANATOMY DEFINED

OBJECTIVE
- Define anatomy and physiology, and name several branches of anatomy.

Anatomy (a-NAT-ō-mē; ana- = up; -tomy = process of cutting) is primarily the study of structure and the relationships among structures. It was first studied by *dissection* (dis-SEK-shun; dis- = apart; -section = act of cutting), the careful cutting apart of body structures to study their relationships. Today, a variety of imaging techniques also contribute to the advancement of anatomical knowledge. We will describe and compare some common imaging techniques in *Table 1.3*, which appears later in this chapter (see Section 1.8). The anatomy of the human body can be studied at various levels of structural organization, ranging from microscopic (visible only with the aid of a microscope) to macroscopic (visible without the use of a microscope). These levels and the different methods used to study them provide the basis for the branches of anatomy, several of which are described in *Table 1.1*.

Anatomy deals mostly with structures of the body. A related discipline, *physiology* (fiz′-e-OL-o-je; physio- = nature; -logy = study of), deals with *functions* of body parts—that is, how they work. Because function cannot be separated completely from structure, you will learn how the structure of the body often reflects its functions. Some of the structure–function relationships are visibly obvious, such as the tight connections between the bones of the skull, which protect the brain. In contrast, the bones of the fingers are more loosely joined to permit movements such as playing an instrument, grasping a baseball bat, or retrieving a small object from the floor. The shape of the external ear assists in the collection and localization of sound waves, which facilitates hearing. Other relationships are not as visibly obvious; for example, the passageways that carry air into the lungs branch extensively when they reach the lungs. Tiny air sacs—about 300 million—cluster at the ends of the large number of airway branches. Similarly, the vessels carrying blood into the lungs branch extensively to form tiny tubes that surround the small air sacs. Because of these anatomical features, the total surface area within the lungs is about the size of a handball court. This large surface area is the key to the primary function of the lungs: the efficient exchange of oxygen and carbon dioxide between the air and the blood.

CHECKPOINT
1. Which branches of anatomy would be used when dissecting a cadaver?
2. Give several examples of connections between structure and function in the human body.

TABLE 1.1

<table>
<thead>
<tr>
<th>BRANCH</th>
<th>STUDY OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryology (em′-brē-OL-ō-jē; embry- = embryo; -logy = study of)</td>
<td>In humans, the first eight weeks of development after fertilization of the egg</td>
</tr>
<tr>
<td>Developmental biology</td>
<td>The complete developmental history of an individual from fertilization to death</td>
</tr>
<tr>
<td>Cell biology</td>
<td>Cellular structure and function</td>
</tr>
<tr>
<td>Histology (his′-TOL-ō-jē; hist- = tissue)</td>
<td>Microscopic structure of tissues</td>
</tr>
<tr>
<td>Sectional anatomy</td>
<td>Internal structure and relationships of the body through the use of sections</td>
</tr>
<tr>
<td>Gross anatomy</td>
<td>Structures that can be examined without using a microscope</td>
</tr>
<tr>
<td>Systemic anatomy</td>
<td>Structure of specific systems of the body such as the nervous or respiratory systems</td>
</tr>
<tr>
<td>Regional anatomy</td>
<td>Specific regions of the body such as the head or chest</td>
</tr>
<tr>
<td>Surface anatomy</td>
<td>Surface markings of the body to understand the relationships of deep or internal anatomy through visualization and palpation (gentle touch)</td>
</tr>
<tr>
<td>Imaging anatomy</td>
<td>Internal body structures that can be visualized with x-rays, CT scans, MRI, and other technologies</td>
</tr>
<tr>
<td>Pathological anatomy (path-′-ō-LOJ-ik-al; path- = disease)</td>
<td>Structural changes (from gross to microscopic) associated with disease</td>
</tr>
</tbody>
</table>
Several noninvasive diagnostic techniques are commonly used by health-care professionals and students to assess certain aspects of body structure and function. A noninvasive diagnostic technique is one that does not involve insertion of an instrument or device through the skin or into a body opening. In inspection, the first noninvasive diagnostic technique, the examiner observes the body for any changes that deviate from normal (Figure A). For example, a physician may examine the mouth cavity for evidence of disease. In palpation (pal-PA-shun; palp=to touch) the examiner feels body surfaces with the hands (Figure B). An example is palpating the neck to detect enlarged or tender lymph nodes. In auscultation (aus-’cul-TA-shun; ausculta=to listen to) the examiner listens to body sounds to evaluate the functioning of certain organs, often using a stethoscope to amplify the sounds (Figure C). An example is auscultation of the lungs during breathing to check for crackling sounds associated with abnormal fluid accumulation in the air spaces of the lungs. In percussion (pur-KUSH-un; percus=to beat) the examiner taps on the body surface with the fingertips and listens to the resulting sound. Hollow cavities or spaces produce a different sound than solid organs do (Figure D). For example, percussion may reveal the abnormal presence of fluid in the lungs or air in the intestines. It is also used to reveal the size, consistency, and position of an underlying structure. An understanding of anatomy is important for the effective application of most of these techniques. Also, clinicians use these terms and others covered in this chapter to annotate their findings following a clinical examination.

1.2 LEVELS OF BODY ORGANIZATION AND BODY SYSTEMS

OBJECTIVES

• Describe the levels of structural organization that make up the human body.
• Outline the 11 systems of the human body, list the organs present in each, and explain their general functions.

The levels of organization of a language—letters of the alphabet, words, sentences, paragraphs, and so on—can be compared to the levels of organization of the human body. Your exploration of the human body will extend from some of the smallest body structures and their functions to the largest structure—an entire person. Organized from smallest to largest, six levels of organization will help you to understand anatomy: the chemical, cellular, tissue, organ, system, and organismal levels of organization (Figure 1.1).

1. The chemical level, which can be compared to the letters of the alphabet, includes atoms, the smallest units of matter that participate in chemical reactions, and molecules, two or more atoms joined together. Certain atoms, such as carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), and calcium (Ca), are essential for life. Two familiar molecules found in the body are deoxyribonucleic acid (DNA), the genetic material passed from one generation to the next, and glucose, commonly known as blood sugar.

2. At the cellular level, molecules combine to form cells, which can be compared to assembling letters into words. Cells are structures composed of chemicals and are the basic structural and functional units of an organism. Just as words are the smallest building blocks of language, cells are the smallest living units in the human body. Among the many kinds of cells in your body are muscle cells, nerve cells, and blood cells. Figure 1.1 shows a smooth muscle cell, one of three types of muscle cells in the body. The cellular level of organization is the focus of Chapter 2.

3. The next level of structural organization is the tissue level. Tissues are groups of cells and the materials surrounding them that work together to perform a particular function, similar to the way words are put together to form sentences. There are just four basic types of tissue in your body: epithelial tissue, connective tissue, muscular tissue, and nervous tissue. Epithelial tissue covers body surfaces, lines hollow organs and cavities, and forms glands. Connective tissue connects, supports, and protects body organs while distributing blood vessels to other tissues. Muscular tissue contracts (shortens) to make body parts move and generates heat. Nervous tissue carries information from one part of the body to another. Chapter 3 describes the tissue level of organization in greater detail. Shown in Figure 1.1 is smooth muscle tissue, which consists of tightly packed smooth muscle cells.

4. At the organ level, different types of tissues are joined together. Similar to the relationship between sentences and paragraphs, organs are structures that are composed of two or more different types of tissues; they have specific functions and usually have recognizable shapes. Examples of organs are the stomach, heart, liver, lungs, and brain. Figure 1.1 shows how several tissues make up the stomach. The stomach’s outer covering is a layer of epithelial and connective tissues that reduces friction when the stomach moves and rubs against other organs. Underneath these layers is a type of muscular tissue called smooth muscle tissue, which contracts to churn and mix food and
push it on to the next digestive organ, the small intestine. The innermost lining, the epithelial tissue layer, produces fluid and chemicals responsible for digestion in the stomach.

The next level of structural organization in the body is the system level, also called the organ-system level. A system (or chapter in our language analogy) consists of related organs (paragraphs) with a common function. An example is the digestive system, which breaks down and absorbs food. Its organs include the mouth, salivary glands, pharynx (throat), esophagus (tube that carries food from the throat to the stomach), stomach, small intestine, large intestine, liver, gallbladder, and pancreas. Sometimes an organ is part of more than one system. For example, the pancreas, which has multiple functions, is included in the digestive and endocrine systems.

The largest organizational level is the organismal level. An organism (OR-ga-nizm), any living individual, can be compared to a book in our analogy. All the parts of the human body functioning together constitute the total organism.

In the following chapters, you will study the anatomy and some physiology of the body systems. Table 1.2 introduces the components and functions of these systems in the order they are discussed in the book.

CHECKPOINT

3. Define the following terms: atom, molecule, cell, tissue, organ, system, and organism.
4. Which body systems help eliminate wastes? (Hint: Refer to Table 1.2.)

Figure 1.1 Levels of structural organization in the human body.

The levels of structural organization are chemical, cellular, tissue, organ, system, and organismal.

Chemical Level

- Atoms (C, H, O, N, P)

Cellular Level

- Molecule (DNA)

Tissue Level

- Smooth muscle cell
- Smooth muscle tissue

Organ Level

- Mouth
- Liver
- Gallbladder
- Large intestine
- Small intestine
- Esophagus
- Stomach
- Pancreas (behind stomach)

System Level

- Salivary glands
- Pharynx (throat)

Organismal Level

- Digestive system

Which level of structural organization is composed of two or more different types of tissues that work together to perform a specific function?
TABLE 1.2

The Eleven Systems of the Human Body

SKELETAL SYSTEM (CHAPTERS 6–9)

Components: Bones and joints of the body and their associated cartilages.

Functions: Supports and protects the body; provides a surface area for muscle attachments; aids body movements; houses cells that produce blood cells; stores minerals and lipids (fats).

INTEGUMENTARY SYSTEM (CHAPTER 5)

Components: Skin, and structures associated with it, such as hair, fingernails and toenails, sweat glands, and oil glands and the subcutaneous layer.

Functions: Protects the body; helps regulate body temperature; eliminates some wastes; helps make vitamin D; detects sensations such as touch, pain, warmth, and cold; stores fat; provides insulation.

MUSCULAR SYSTEM (CHAPTERS 10, 11)

Components: Specifically refers to skeletal muscle tissue, which is muscle usually attached to bones (other muscle tissues include smooth and cardiac).

Functions: Participates in bringing about body movements, such as walking; maintains posture; and produces heat.
TABLE 1.2 CONTINUED

The Eleven Systems of the Human Body

LYMPHATIC SYSTEM AND IMMUNITY (CHAPTER 15)

Components: Lymphatic fluid, lymphatic vessels, spleen, thymus, lymph nodes, and tonsils; cells that carry out immune responses (B cells, T cells, and others).

Functions: Returns proteins and fluid to blood; carries lipids from gastrointestinal tract to blood; contains sites of maturation and proliferation of B cells and T cells that protect against disease-causing microbes.

CARDIOVASCULAR SYSTEM (CHAPTERS 12–14)

Components: Blood, heart, and blood vessels.

Functions: Heart pumps blood through blood vessels; blood carries oxygen and nutrients to cells and carbon dioxide and wastes away from cells and helps regulate acid–base balance, temperature, and water content of body fluids; blood components help defend against disease and repair damaged blood vessels.

NERVOUS SYSTEM (CHAPTERS 16–21)

Components: Brain, spinal cord, nerves, and special sense organs, such as the eyes and ears.

Functions: Generates action potentials (nerve impulses) to regulate body activities; detects changes in the body’s internal and external environments, interprets the changes, and responds by causing muscular contractions or glandular secretions.