THE PHYSICAL MEASUREMENT OF BONE

Series in Medical Physics and Biomedical Engineering

Series Editors:

C G Orton, Karmanos Cancer Institute and Wayne State University, Detroit, USA

J A E Spaan, University of Amsterdam, The Netherlands

J G Webster, University of Wisconsin-Madison, USA

Other books in the series

Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

H Zaidi and G Sgouros (eds)

Minimally Invasive Medical Technology

J G Webster (ed)

Intensity-Modulated Radiation Therapy

S Webb

Physics for Diagnostic Radiology

P Dendy and B Heaton

Achieving Quality in Brachytherapy

B R Thomadsen

Medical Physics and Biomedical Engineering

B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose

Monte Carlo Calculations in Nuclear Medicine: Applications in Diagnostic Imaging

M Ljungberg, S-E Strand and M A King (eds)

Introductory Medical Statistics 3rd Edition

R F Mould

Ultrasound in Medicine

F A Duck, A C Barber and H C Starritt (eds)

Design of Pulse Oximeters

J G Webster (ed)

The Physics of Medical Imaging

S Webb

Series in Medical Physics and Biomedical Engineering

THE PHYSICAL MEASUREMENT OF BONE

Edited by C M Langton

Centre for Metabolic Bone Disease Hull and East Yorkshire Hospitals NHS Trust and University of Hull Hull UK

C F Njeh

Department of Radiology University of California, San Francisco San Francisco USA

Institute of Physics Publishing
Bristol and Philadelphia

© IOP Publishing Ltd 2004

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with Universities UK (UUK).

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN 0 7503 0838 9

Library of Congress Cataloging-in-Publication Data are available

Series Editors:

C G Orton, Karmanos Cancer Institute and Wayne State University, Detroit, USA

J A E Spaan, University of Amsterdam, The Netherlands J G Webster, University of Wisconsin-Madison, USA

Commissioning Editor: John Navas Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Victoria Le Billon

Marketing: Nicola Newey and Verity Cooke

Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London

Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK

US Office: Institute of Physics Publishing, The Public Ledger Building, Suite 929, 150 South Independence Mall West, Philadelphia, PA 19106, USA

Typeset by Academic+Technical, Bristol Printed in the UK by MPG Books Ltd, Bodmin, Cornwall The Series in Medical Physics and Biomedical Engineering is the official book series of the International Federation for Medical and Biological Engineering (IFMBE) and the International Organization for Medical Physics (IOMP)

IFMBE

The International Federation for Medical and Biological Engineering (IFMBE) was established in 1959 to provide medical and biological engineering with a vehicle for international collaboration in research and practice of the profession. The Federation has a long history of encouraging and promoting international cooperation and collaboration in the use of science and engineering for improving health and quality of life.

The IFMBE is an organization with membership of national and transnational societies and an International Academy. At present there are 48 national members and two transnational members representing a total membership in excess of 30 000 worldwide. An observer category is provided to give personal status to groups or organizations considering formal affiliation. The International Academy includes individuals who have been recognized by the IFMBE for their outstanding contributions to biomedical engineering.

Objectives

The objectives of the International Federation for Medical and Biological Engineering are scientific, technological, literary and educational. Within the field of medical, clinical and biological engineering its aims are to encourage research and the application of knowledge, and to disseminate information and promote collaboration.

In pursuit of these aims the Federation engages in the following activities: sponsorship of national and international meetings, publication of official journals, cooperation with other societies and organizations, appointment of commissions on special problems, awarding of prizes and distinctions, establishment of professional standards and ethics within the field, as well as other activities which in the opinion of the General Assembly or the Administrative Council would further the cause of medical, clinical or biological engineering. It promotes the formation of regional, national, international or specialized societies, groups or boards, the coordination of bibliographic or informational services and the improvement of standards in terminology, equipment, methods and safety practices, and the delivery of health care.

The Federation works to promote improved communication and understanding in the world community of engineering, medicine and biology.

Activities

The IFMBE publishes the journal *Medical and Biological Engineering and Computing*, which includes a special section on *Cellular Engineering*. The *IFMBE News*, published electronically, keeps the members informed of the developments in the Federation. In cooperation with its regional conferences, IFMBE issues a series of the IFMBE Proceedings. IFMBE's official book series, *Medical Physics and Biomedical Engineering* is published by the Institute

of Physics Publishing in cooperation with IOMP and represents another service to the Biomedical Engineering Community. The books in this series describe applications of science and engineering in medicine and biology and are intended for both graduate students and researchers. They cover many topics in the field of medical and biological engineering, as well as medical physics, radiology, radiotherapy and clinical research.

The Federation has two divisions: Clinical Engineering and Technology Assessment in Health Care. Additional special interest groups are the regional working groups: Africa/ICHTM, Asian-Pacific, Coral, Developing Countries, and the scientific working groups: Cellular Engineering, Neuro-engineering, and Physiome.

Every three years the IFMBE holds a World Congress on Medical Physics and Biomedical Engineering in cooperation with the IOMP and the IUPESM. In addition, annual, milestone and regional conferences are organized in different regions of the world, e.g. in the Asia-Pacific, Nordic-Baltic, Mediterranean, African and South American regions.

The Administrative Council of the IFMBE meets once a year and is the steering body for the IFMBE. The council is subject to the rulings of the General Assembly, which meets every three years at the occasion of the World Congress.

Information on the activities of the IFMBE are found on its website at http://www.ifmbe.org.

IOMP

The IOMP was founded in 1963. The membership includes 64 national societies, two international organizations and 12 000 individuals. Membership of IOMP consists of individual members of the Adhering National Organizations. Two other forms of membership are available, namely Affiliated Regional Organization and Corporate members. The IOMP is administered by a Council, which consists of delegates from each of the Adhering National Organizations; regular meetings of council are held every three years at the International Conference on Medical Physics (ICMP). The Officers of the Council are the President, the Vice-President and the Secretary-General. IOMP committees include: developing countries, education and training; nominating; and publications.

Objectives

- To organize international cooperation in medical physics in all its aspects, especially in developing countries.
- To encourage and advise on the formation of national organizations of medical physics in those countries which lack such organizations.

Activities

Official publications of the IOMP are *Physiological Measurement*, *Physics in Medicine and Biology* and the *Series in Medical Physics and Biomedical Engineering*, all published by the Institute of Physics Publishing. The IOMP publishes a bulletin *Medical Physics World* twice a year.

Two council meetings and one General Assembly are held every three years at the ICMP. The most recent ICMPs were held in Kyoto, Japan (1991), Rio de Janeiro, Brazil (1994), Nice, France (1997) and Chicago, USA (2000). These conferences are normally held in collaboration with the IFMBE to form the World Congress on Medical Physics and Biomedical Engineering. The IOMP also sponsors occasional international conferences, workshops and courses.

For further information contact: Hans Svensson, PhD, DSc, Professor, Radiation Physics Department, University Hospital, 90185 Umeå, Sweden. Tel: (46) 90 785 3891. Fax: (46) 90 785 1588. Email: Hans.Svensson@radfys.umu.se. WWW: http://www.iomp.org.

Contents

	LIST	OF CONTRIBUTORS	xxiii
	PRE	FACE	xxvi
SI	ECTIO	N 1 INTRODUCTION	1
1	ANA	TOMY, PHYSIOLOGY AND DISEASE	3
	1.1.	Introduction	3
	1.2.	Bone morphology and organization	5
	1.3.	Bone tissue I: the role of bone cells	6
		1.3.1. The osteoclast	6
		1.3.2. The osteoblast	9
		1.3.3. The osteocytes	10
	1.4.	<u> </u>	11
	1.5.	1	14
	1.6.		16
		1.6.1. Introduction	16
	1.7.	Osteoporosis	18
		1.7.1. Introduction	18
		1.7.2. Pathophysiology of osteoporosis	19
		1.7.3. Etiologic factors in osteoporosis	21
		1.7.4. Epidemiology	23
	1.8.	Summary	26
		References	26
2	BIOL	OGICAL SAFETY CONSIDERATIONS	35
	2.1.	Introduction	35
	2.2.	Duties and responsibilities	35
	2.3.	F	37
	2.4.	Risk assessment	38
	2.5.	Quantifying risk	39
	2.6.	Acceptable risk	40

	~	
v	Contents	1

2.7.	Risk rec	luction	40
2.8.	Hierarchy of risk reduction		
2.9.	Specific	risks associated with the processing of bone	41
	2.9.1.	Hazard identification	41
2.10.	Mechan	ical hazards	41
	2.10.1.	Sawing bone	43
	2.10.2.	Electrical hazards	44
	2.10.3.	Chemical hazards	45
2.11.	Hazard	identification	45
	2.11.1.	Toxicity hazard	45
	2.11.2.	Corrosive hazards	46
	2.11.3.	Exposure limits	46
	2.11.4.	Reactive hazards	47
	2.11.5.	Reactive hazards Flammability hazards	48
2.12.	Extingu		49
2.13.	Risk red	duction and control: chemicals	50
	2.13.1.	Fume cupboards	50
	2.13.2.	Biological hazards	51
2.14.	Hazard	categories of biological agents	52
2.15.	Hazard	identification and hazard reduction at source	52
	2.15.1.	For human bone	52
	2.15.2.	For animal bone	53
2.16.	Prion di	iseases	53
2.17.	Biologic	cal control measures	54
	2.17.1.	Allergens: control of exposure	55
	2.17.2.	Microbiological safety cabinets	55
	2.17.3. 2.17.4.	Disinfectants	56
	2.17.4.	Disinfection of cryostats	57
	2.17.5.	Fumigation	57
		Disinfection of mechanical testing equipment	
		and machine tools	58
	2.17.7.	Autoclaves	59
	2.17.8.	Disposal of biological waste	60
	2.17.9.	Removal of equipment	61
2.18.	Use of p	personal protective equipment	61
2.19.	General	managerial considerations	62
	2.19.1.	Restricted access and permits to work	63
	2.19.2.		63
	2.19.3.	Prophylactic treatment	64
2.20.	Content	ts of a risk assessment	64
	2.20.1.	Conveying the information to personnel	66
	2.20.2.	Who should compile a risk assessment?	67
2.21.	Transpo	ort, packaging and labelling of biological	
	samples		67

		Contents	xi
	2.22.	Ionizing and non-ionizing radiation	69
		2.22.1. Ultraviolet light sources and lasers	69
		2.22.2. Genetic modification	69
		References	70
3.	RAD	IATION SAFETY CONSIDERATIONS	72
	3.1.	Introduction	72
		3.1.1. Units of radiation measurement	73
		3.1.2. Radiation detector	75
	3.2.	Radiation dose to the patient	77
		3.2.1. Introduction	77
		3.2.2. Patient doses from dual X-ray absorptiometry	77
		3.2.3. Patient doses from fan beam DXA	79
		3.2.4. Doses from vertebral morphometry using DXA	80
		3.2.5. Paediatric doses from DXA	81
		3.2.6. Patient doses from QCT	82
		3.2.7. Patient dose from other techniques	84
	3.3.	Staff dose from DXA	84
	3.4.	Staff dose from other techniques	86
	3.5.	Reduction of occupational dose	86
	3.6.	Dose reduction techniques in DXA applications	86
	3.7.	Problems with measuring patient and staff dose from	
		absorptiometric techniques	87
	3.8.	Conclusion	88
		References	88
4.	INST	RUMENT EVALUATION	91
	4.1.	Introduction	91
	4.2.	Measurement errors	91
		4.2.1. Types of measurement error	92
	4.3.	Equipment validation	94
		4.3.1. Precision	94
		4.3.2. Accuracy	99
		4.3.3. When are two measurements significantly	
		different?	101
	4.4.	Statistical methods in equipment validation	103
		4.4.1 Method-comparison studies	103
		4.4.2. Bland and Altman plot	104
		4.4.3. Regression analysis and correlations	108
		4.4.4. Clinical evaluation of a new device	110
	4.5.	Quality assurance (QA)	113
		4.5.1. Introduction	113
		4.5.2. Tools for QA	115
		References	120

SE	CTIO	N 2 IN	VASIVE TECHNIQUES	123
5.	MECI	HANICA	AL TESTING	125
	5.1.	Introdu	ection	125
		5.1.1.	Bone	125
		5.1.2.	Bone structure	127
		5.1.3.	Why study the mechanical properties of bone?	129
		5.1.4.	Basic concepts in bone mechanics and definition	
			of terms	130
	5.2.	Equipn	nent and specimen consideration	136
		5.2.1.	Equipment	136
		5.2.2.	Specimen handling	137
	5.3.	Method	ds of measuring the mechanical properties of	
		bone tis	ssue	139
		5.3.1.	Uniaxial compressive test	139
		5.3.2.	Uniaxial tensile test	141
		5.3.3.	Bending test	144
		5.3.4.	Torsion test	146
		5.3.5.	Fatigue	147
			Indentation/hardness tests	148
			Ultrasound	149
		5.3.8.	Conclusion	152
	5.4.	Method	ls of measuring the mechanical properties of the	
		trabecu	lae	153
		5.4.1.	Microhardness	154
		5.4.2.	Nano-indentation	154
		5.4.3.	Buckling	159
		5.4.4.	Ultrasound technique	159
		5.4.5.	Other techniques	159
		5.4.6.	Conclusions	161
	5.5.	Factors	Influencing the Mechanical Properties of Bone	161
		5.5.1.	Specimen configuration	162
		5.5.2.	Specimen preservation	163
		5.5.3.	Bone hydration	163
		5.5.4.	Sterilization	163
		5.5.5.	Strain rate	164
		5.5.6.	Age and disease	165
		5.5.7.	Temperature	166
		5.5.8.	Miscellaneous	166
	5.6.		nical properties of bone	166
		5.6.1.	Introduction	166
		5.6.2.	Mechanical properties of cancellous bone	167
		5.6.3.	Mechanical properties of cortical bone	172
		Referen		174

			Contents	xiii
6.	HISTO	OMORPI	HOMETRY	185
	6.1.	Introdu	ction	185
	Section	n A: Mic	roarchitecture using computerized and	
		l techniqu	ĕ 1	186
	6.2.		ılar architecture—non-invasive, non-destructive	188
	6.3.		ılar architecture—two-dimensional histology	189
	6.4.		becular analysis system (TAS)	191
	6.5.		ular architecture—three-dimensional image	201
	0.0.	6.5.1.	Serial section techniques	202
		6.5.2.	*	204
	Section		rofracture and microcallus	207
			trix remodelling	214
	6.6.		ter-assisted histomorphometry	214
	0.0.	6.6.1.	The OsteoMeasure system	214
		6.6.2.	*	211
		0.0.2.	calcification front	218
	6.7.	Acknow	vledgments	219
	0.7.	Referen		220
		Referen		220
7.	MICR	OSCOPY	Y AND RELATED TECHNIQUES	225
	7.1.	Introdu		225
	Section	n A: Mol	lecular labelling	228
	7.2.	Radiois	otope-labelling of bone—autoradiography	228
	7.3.		crotomy, bone bistology and Immunohistochemistry	230
		7.3.1.	Immunohistochemistry	230
		7.3.2.	Immunohistochemistry of the extracellular matrix	234
		7.3.3.		
			labelling	236
		7.3.4.	<i>In situ</i> hybridization	237
	7.4.	Laser co	onfocal microscopy	238
	Section	n B: Min	eral microanalysis and morphology	239
	7.5.	Mineral	density	240
		7.5.1.	Ashing and volume displacement	240
		7.5.2.	Density gradient fractionation of powdered bone	240
	7.6.	Mineral	Microanalysis	241
		7.6.1.	Microradiography	241
		7.6.2.	Backscattered electron image analysis	243
		7.6.3.	Electron probe X-ray microanalysis	
			(by specialist Dr Roger C Shore)	244
	7.7.	Mineral	morphology	248
		7.7.1.	Scanning electron microscopy	248
		7.7.2.	High velocity impact ('slam') freezing	249
		7.7.3.	Atomic and chemical force microscopy	
			(by specialist Prof. Jennifer Kirkham)	257

•	~
X1V	Contents

7.8	Acknow Referen	vledgments ces	261 261
SECTIO	N 3 IO	NIZING RADIATION TECHNIQUES	265
B. ABSO	ORPTION	METRIC MEASUREMENT	26
8.1.	Introdu	ction	26
Section	on A: Fun	damental principles of radiation physics	26
8.2.	Fundan	nentals of radiation physics	26
	8.2.1.	γ -rays	269
	8.2.2.	X-rays	270
	8.2.3.	Inverse square law	27
8.3.	Interact	ion of X-rays and γ -rays with matter	272
	8.3.1.	Introduction	272
	8.3.2.	Interaction mechanism	274
	8.3.3.	Attenuation in tissue	270
Section	on B: Insti	rumentation and principles	27'
8.4.	Generat	tion of X-ray	27
	8.4.1.	Introduction	27
	8.4.2.	X-ray spectrum	278
		Factors affecting the X-ray spectrum	279
8.5.		l principles of absorptiometry	28
	8.5.1.	Single energy (γ -ray or X-ray)	
		absorptiometry	28
	8.5.2.	Dual energy absorptiometry	283
	8.5.3.		28
Section	on C: Clin	ical applications	289
8.6.	Sites me	easured	289
	8.6.1.	Lumbar spine	289
		Lateral spine	29
	8.6.3.	Proximal femur	293
	8.6.4.	Peripheral sites	294
	8.6.5.	Total body and body composition	29:
		Vertebral morphometry	29
8.7.	Radiatio	on dose to the patient	29′
8.8.		of <i>in vivo</i> measurement error	29
	8.8.1.	Accuracy	298
	8.8.2.	Precision	298
	8.8.3.	Other error sources	300
8.9.		assurance and quality control	302
	8.9.1.	Quality assurance	302
	8.9.2.	Cross calibration	302
	Referen		304

	Contents	XV
9. OUAl	NTITATIVE COMPUTED TOMOGRAPHY	308
9.1.	Introduction	308
9.2.	Single-slice spinal bone mineral density measurement	310
9.3.	Physical significance of QCT measurements	311
9.4.	Measurement of BMD using volumetric CT images of	
	the spine and hip	313
	References	316
10. PERT	PHERAL QUANTITATIVE COMPUTED	
	OGRAPHY AND MICRO-COMPUTED	
	OGRAPHY	319
10.1.	Introduction	319
10.2.		319
10.3.	1	321
10.4.		323
10.5.	* * *	
	geometry assessments	326
10.6.	-	327
10.7.	• 1 •	328
10.8.		329
10.9.	·	331
10.10.	Summary	332
	References	333
11. RAD	IOGRAMMETRY	337
11.1.	Overview	337
11.2.	Introduction	337
Sectio	n A: Fundamental principles of radiogrammetry	339
11.3.		
	from two-dimensional planar images	339
11.4.	The cortical index	340
11.5.	Precision of basic one-dimensional radiogrammetry	
	measurement	341
11.6.	Extending radiogrammetry from one-dimensional to	
	two-dimensional measurement	341
11.7.	Conversion of two-dimensional radiogrammetric	
	measurements to bone volume per area	342
11.8.	Conversion of calculated bone volume to bone mineral	
	density (BMD)	343
11.9.	Extending radiogrammetry to two-dimensional areas	
	and three-dimensional volumes from two-dimensional	
	cross-sectional slices	344
11.10.	Extending radiogrammetry from two-dimensional slice	
	measurement to true three-dimensional	345

XV1	Contents

	Section	n B: Limiting factors in radiogrammetry	345
	11.11.	Image sharpness and image geometry	345
	Section	n C: The clinical application of radiogrammetry	349
	11.12.	Implementing a new radiogrammetry technique in a	
		clinical setting	349
	11.13.	Choosing an appropriate target condition	349
	11.14.	Choosing the target bone	350
	11.15.	Choosing the modality	350
	11.16.	Establishing the image geometry	351
		Choosing the means of measurement	352
	11.18.	The need for comparative reference	353
	11.19.	Measurement validity	353
	11.20.	Further research opportunities in radiogrammetry	353
		References	354
12		VO NEUTRON ACTIVATION ANALYSIS AND	
		ON SCATTERING	355
		Introduction	355
	12.2.	• • • • • • • • • • • • • • • • • • • •	356
		12.2.1. Delayed gamma techniques	357
		12.2.2. Prompt gamma techniques	362
		12.2.3. Clinical applications and conclusion	362
	12.3.	e e	
		density	363
		12.3.1 Theory	365
		12.3.2. Techniques	366
		12.3.3. Conclusions	373
		References	373
SF	CTION	N 4 NON-IONIZING TECHNIQUES	377
13	. MAG	NETIC RESONANCE IMAGING	379
	13.1.	Introduction	379
	13.2.	Quantitative magnetic resonance (QMR)	381
	13.3.		386
		13.3.1. <i>In vitro</i> studies	388
		13.3.2. Animal models	393
		13.3.4. <i>In vivo</i> human studies	395
	13.4.	Conclusion	404
	13.5.	Acknowledgment	405
		References	405
14		NTITATIVE ULTRASOUND	412
	Section	n A: Fundamentals of ultrasound propagation	412
	14.1.	Terminology	412

		Contents	xvii
	14.1.1.	Ultrasound	412
	14.1.2.	Frequency	412
14.2.		and propagation through materials	414
	14.2.1.	Spring model propagation	414
	14.2.2.		414
	14.2.3.		416
	14.2.4.	Propagation velocity dependence	416
	14.2.5.	Phase and group velocity	416
14.3.	Amplitu	de, intensity and attenuation	417
	14.3.1.	Amplitude and intensity	417
	14.3.2.	Attenuation	417
	14.3.3.	Broadband ultrasound attenuation	417
14.4.	Interface	e behaviour	418
	14.4.1.	Acoustic impedance	418
	14.4.2.	Normal incidence at a tissue interface	418
		Non-normal incidence at a tissue interface	419
	14.4.4	Coupling	420
14.5.	Ultrasou	and wave formats	420
	14.5.1.	Continuous, tone-burst and pulsed waves	420
	14.5.2.	Bandwidth theorem	421
	14.5.3.	Frequency spectrum and Q factor	422
Section	B: Instr	umentation	422
14.6.	The ultra	asound transducer and beam profile	422
	14.6.1.	Piezoelectric effect and transducer	422
	14.6.2.	Transducer design	423
	14.6.3.	Beam profile	424
	14.6.4.	Focusing	425
14.7.	Instrume	entation	425
	14.7.1	Pulse-echo technique	425
	14.7.2.	Transmission technique	427
	14.7.3.	Simple radio-frequency (RF) system	427
	14.7.4.	Integrated pulse-echo system	429
		Rectilinear scanning	431
	14.7.6.	Backscattering analysis	433
		oretical modelling	433
14.8.	Biot the	ory	433
14.9.	Schoenb	erg's theory	434
14.10	Other models		434
		tro experiments	434
14.11.	Bone sar	nples	434
	14.11.1.		434
	14.11.2.	Sample size and shape	434
	14.11.3.	1 1 1	435
14.12.	Measure	ement: methodology and analysis	435

	~
XV111	Contents

		14.12.1.	Coupling	435	
		14.12.2.	Transducers	436	
		14.12.3.	Transit time velocity measurements	436	
			Alternative velocity measurements	437	
		14.12.5.	Critical angle reflectometry	438	
		14.12.6.	Attenuation	438	
		14.12.7.	Error sources	438	
	14.13.	In vitro e	experimental findings	444	
		14.13.1.	QUS and bone density	444	
		14.13.2.	QUS and mechanical properties	445	
		14.13.3.	QUS and bone structure	446	
	Section	n E: In vi	vo clinical assessment	448	
	14.14.	Commer	rcial systems	448	
		14.14.1.	Anatomical sites	448	
		14.14.2.	Methodology: coupling	451	
		14.14.3.	Methodology: measurement variables	452	
		14.14.4.	Quality assurance	455	
		14.14.5.	Cross-calibration	455	
		14.14.6.	Artefacts and sources of errors	457	
	14.15.	In vivo a	pplication of ultrasound	458	
		14.15.1.	In vivo studies	458	
		14.15.2.	In vivo QUS measurement	459	
		14.15.3.	Age-related change	459	
		14.15.4.	Velocity diagnostic sensitivity	460	
		14.15.5.	BUA diagnostic sensitivity	461	
		14.15.6.	QUS and longitudinal monitoring	462	
		14.15.7.	Paediatric application	463	
		14.15.8.	Application to rheumatoid arthritis	463	
		Reference	ees	464	
15	FINIT	E ELEM	ENT MODELLING	475	
	15.1.	Introduc	etion	475	
	Section A: Finite element analysis of bone: general considerations			475	
	15.2.	·			
	15.3.	FE analy	ysis applied to bone	476	
		15.3.1	Structural and solid mechanics FE analysis	476	
		15.3.2.	Poroelastic FE analysis	478	
		15.3.3.	Other types of FE analysis	478	
	15.4.	Generati	on of FE models	479	
	15.5.	Equipme	ent and software	481	
	Section	on B: Bone mechanical characterization and fe modelling at			
	differe	nt levels o	f structural organization	481	
	15.6.	The who	ele bone (apparent) level	482	
			Structural characterization	482	

		Contents	xix
		15.6.2. Mechanical characterization	483
		15.6.3. FE modelling	484
	15.7.	The trabecular bone level	485
	10.71	15.7.1. Structural characterization	485
		15.7.2. Mechanical characterization	485
		15.7.3. FE modelling	485
	15.8.	Bone tissue and ultrastructural level	487
		15.8.1. Structural characterization	487
		15.8.2. Mechanical characterization	487
		15.8.3. FE modelling	487
	Section	n C: FE analysis of bone and bones at the organ level:	
	contem	porary applications and results	488
	15.9.	Analysis of bone mechanical properties and loading	488
		15.9.1. Bone failure load	488
		15.9.2. Bone fracture healing and tissue differentiation	
		analysis	489
		15.9.3. Consequences of orthopaedic implants and	
		interventions	490
	15.10.	Clinical assessment of bone mechanical properties	492
	15.11.	Simulation of mechanically induced biological processes	492
		15.11.1. Bone remodelling	493
		15.11.2. Tissue differentiation and fracture healing	495
		n D: FE analysis at the bone trabecular level: recent	
		ations and results	496
	15.12.	Analysis of bone mechanical properties and loading	496
		15.12.1. Elastic properties	496
		15.12.2. Strength and yield properties	497
		15.12.3. Assessment of physiological bone tissue	
		loading	498
		Clinical assessment of bone mechanical properties	499
	15.14.	Simulation of mechanically induced biological processes	500
		15.14.1. Bone remodelling	500
	15.15.	Summarizing conclusion	502
		References	503
16	VIBR	ATION ANALYSIS	511
	Section	A: Introduction	511
	16.1.	Condition monitoring of machinery	511
	16.2.	Modal analysis	512
	16.3.	Non-destructive testing	512
		16.3.1. Transverse (flexural) vibration methodology	512
	16.4.	Vibrational measurements applied to bone	513
	Section	B: Material properties of whole long bones	513
	16.5.	Frequency response measurements	513

	<i>a</i>
XX	Contents
$\Delta \Delta$	Continus

		16.5.1.	Early studies	513
		16.5.2.	Impulse frequency response (IFR) technique	515
		16.5.3.	Bone resonance analysis (BRA) technique	516
		16.5.4.	Comparison of IFR and BRA techniques	517
		16.5.5.	Mechanical response tissue analysis	
			(MRTA)	518
		16.5.6.	Effect of soft tissue on frequency	520
	16.6.	Longitud	dinal wave propagation	521
		16.6.1.	One-point method	522
		16.6.2.	Two-point method	523
	16.7.	Associat	ion of resonant frequency with torsional and	
		bending		524
		16.8.	Use of vibration to monitor treatment effect	525
	16.9.	Vibratio	n modelling studies	526
			Ulnar model	526
			Tibia model	527
			Femur model	529
	16.10.	Summar		530
			use of vibration in the monitoring of fracture	
	healing		use of visitation in the momenting of fracture	530
		Introduc	etion	530
			quency wave propagation	531
	10.12.		Propagation and measurement of low frequency	001
		10.12.11	waves ('stress waves')	531
		16 12 2	In vitro results	532
			In vivo results	533
	16 13		at frequency measurement	534
	10.15.		Swept sinusoidal vibration	534
			Impulse-response method	535
	16 14		ng of the effect of healing	539
			easurements	540
		Summar		541
			use of vibration in the diagnosis of prosthesis	371
	loosening 5			
		Summar	V	543
	10.17.	Reference	•	543
		Kererene	ees .	343
17	ним	AN STUI	DIES	551
1 /	17.1.			551
			entation of BMD	551 551
		Units of		551
				553
		T-scores	ce population	
				553
	17.5.	Z-scores		554

	Section	n B: Inte	rpretation of BMD Results	556
	17.6.	WHO c		556
	17.7.	Limitati	ions of WHO criteria	556
	17.8.	NOF recommendations		
	17.9.	Fracture risk assessment		
	Section C: Utility of BMD			559
	17.10.	10. Who should be tested?		
	17.11.	How to apply BMD		
		. Diagnostic algorithms		
	Section D: Which Site to Measure			562
	17.13.	Availab	le sites	562
	17.14.	Limitations		
	17.15.	Combining sites to increase diagnostic power		
	Section	n E: Trea	atment Considerations	564
	Section	n F: Mea	surement errors	565
	17.16.	Conclus	sions	567
		Referen	ces	567
18	ANIMAL STUDIES			571
	18.1.	Introdu	ction	571
	18.2.	Animals	s models	571
		18.2.1.	Introduction	571
		18.2.2.	Modelling osteoporosis in animals Rat as a model for osteoporosis	572
		18.2.3.	Rat as a model for osteoporosis	573
		18.2.4.	Sheep as a model of osteoporosis	574
	18.3.	Bone sta	atus measurements	575
		18.3.1.	Introduction	575
		18.3.2.	Bone density Bone structure	575
		18.3.3.		575
		18.3.4.	Bone biomechanical properties	576
	18.4. Techniques for measuring bone density		ues for measuring bone density	576
		18.4.1.	Dual X-ray absorptiometry (DXA)	576
		18.4.2.	Peripheral dual X-ray absorptiometry	577
		18.4.3.	Peripheral quantitative computed tomography (pQCT)	578
	18.5.	Technio	ues for measuring bone structure	578
	10.0.		Introduction	578
			Radiography, microradiography and	570
		10.0.2.	radiogrammetry	579
		18.5.3.	Peripheral quantitative computed tomography	5,7
		10.0.0.	(pQCT)	581
		18.5.4.	Micro-computed tomography (μCT)	582
		18.5.5.	Synchrotron radiation μCT	584
		18.5.6.	μCT three-dimensional assessment	585
				200

INDEX		601
	References	594
18.7.	Summary and perspectives	592
18.6.	Bone strength measurement	
	18.5.8. Histomorphometry	590
	18.5.7. Magnetic resonance imaging (MRI) microscopy	587
xxii	Contents	

List of contributors

Dr Jean Elizabeth Aaron

School of Biomedical Sciences, Worsley Building, The University of Leeds, Leeds LS2 9JT, UK

Prof Alun Beddoe

Medical Physics Department, Queen Elizabeth Hospital, Egbaston, Birmingham B15 2TH, UK

Dr James L Cunningham

Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Dr Harry Genant

Osteoporosis and Arthritis Research Group, University of California San Francisco, 505 Parnassus Avenue, M392, San Francisco, CA 94143, USA

Dr Christopher Gordon

Hamilton Health Sciences Corporation, Department of Nuclear Medicine, Henderson Site (Box 2000), 711 Concession Street, Hamilton, Ontario L8V 1C3, Canada

Dr Didier Hans

Head of Research and Development, Nuclear Medicine Division, Geneva University Hospital, 1211 Geneva 14, Switzerland

Dr Yebin Jiang

Osteoporosis and Arthritis Research Group, Department of Radiology, University of California San Francisco, 513 Parnassus Avenue, HSW-207A, San Francisco, CA 94143-0628, USA

Mr Alan P Kelly

School of Biomedical Sciences and Safety Advisory Services, Worsley Building, The University of Leeds, Leeds LS2 9JT, UK

Dr Thomas F Lang

Associate Professor, Radiology, University of California San Francisco, 533 Parnassus Avenue, U368E, San Francisco, CA 94143-1250, USA

Dr Christian M Langton

Centre for Metabolic Bone Disease, Hull Royal Infirmary, Anlaby Road, Hull HU3 2RW, UK

Dr Sharmila Majumdar

Magnetic Resonance Science Center, Box 1290, AC 109, 1 Irving Street, University of California San Francisco, San Francisco, CA 94143, USA

Dr Patrick H Nicholson

29 Gensing Road, St Leonards on Sea, TN38 0HE, UK

Dr Christopher F Njeh

The John Hopkins University, School of Medicine, Division of Radiation Oncology, The Harry and Jeanette Weinberg Building, 401 North Broadway, Suite 1440, Baltimore, MD 21231-1240, USA

Dr Laurent Pothuaud

Magnetic Resonance Science Center, Box 1290, AC 109, 1 Irving Street, University of California San Francisco, San Francisco, CA 94143, USA

Dr Jae-Young Rho (deceased)

University of Memphis, Department of Biomedical Engineering, ET330, Memphis, TN 38152, USA

Dr Clifford Rosen

Director, The Maine Center for Osteoporosis Research and Education, St Joseph Hospital, 268 Center Street, Bangor, ME 04401, USA

Prof John A Shepherd

Associate Technical Director, Osteoporosis & Arthritis Research Group, Department of Radiology, 350 Parnassus Ave., Suite 205, University of California San Francisco, San Francisco, CA 94143-1349, USA

Dr Patricia Shore

Hard Tissue Biology Laboratory, School of Biomedical Sciences, Worsley Building, The University of Leeds, Leeds LS2 9JT, UK

Dr Ian Stronach

Medical Physics Department, Queen Elizabeth Hospital, Egbaston, Birmingham B15 2TH, UK

Dr Jon A Thorpe

Centre for Metabolic Bone Disease, Hull Royal Infirmary, Anlaby Road, Hull HU8 8PY, UK

Dr Bert van Rietbergen

Eindhoven University of Technology, Department of Biomedical Engineering, PO Box 513, 5600 MB Eindhoven, The Netherlands

Dr Jenny Zhao

Osteoporosis and Arthritis Research Group, Department of Radiology, University of California San Francisco, 513 Parnassus Avenue, HSW-207A, San Francisco, CA 94143-0628, USA