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Preface 

It is with a mixture of pleasure and sadness that we dedicate this third volume of the 
Integrated Systems series of the Handbook of Chemical Neuroanatomy to the memory 
of two outstanding structural neuroscientists, J~mos Szentfigothai and Walle J.H. Nauta, 
who are widely regarded as having led the Romantic School of neuroanatomy through 
the Twentieth Century. Szentfigothai was born on October 31, 1912, in Budapest, and 
passed away on September 8, 1994 in his native city. He was a student of Cajal's friend 
von Lenhoss6k, and like Cajal made enduring contributions to our understanding of 
many components of the nervous system, including (roughly in chronological order) the 
autonomic system, spinal cord, vestibulo-ocular and stretch reflex circuitry, neuroendo- 
crine system, cerebellum, thalamus, and cerebral cortex. What sets his work apart from 
many of his contemporaries was the ability to generalize sensibly. This led, for example, 
to the concepts of synaptic glomeruli and neuronal modules, and to the synthesis for 
which he will always be remembered, The Cerebellum as a Neuronal Machine, published 
in 1967 with his collaborators John Eccles and Masao Ito. 

Nauta was born on June 8, 1916 in Medan, Indonesia; received the M.D. and Ph.D. 
degrees at the University of Utrecht; served the last 30 years of his career at the 
Massachusetts Institute of Technology; and died on March 24, 1994. He perhaps will 
be remembered longest for the 'Nauta method', the first selective silver impregnation 
technique for degenerating axons. It was introduced in 1950 and variants were the 
method of choice for tracing axonal connections for about 25 years, until the use of more 
sensitive intraaxonal transport techniques became widespread. However, Nauta was a 
brilliant writer and an inspiring lecturer; and he published very influential experimental 
analyses of many forebrain systems in a variety of mammals. The limbic system and 
basal ganglia were his specialties, and indeed his work with Mehler on the lentiform 
nucleus of the cat and monkey was the first paper published in Brain Research (I :3-42, 
1966) and is a classic with regard to both style and content. 

We are profoundly grateful to the authors who have committed so much time and 
thoughtfulness to the chapters in the third part of the Integrated Systems component 
of the Handbook. When planning began in 1983, we had hoped to review each of the 
major sensory and motor systems, along with parts of the broader system that controls 
motivated and emotional behavior. Furthermore, each chapter was to be written from 
a dual perspective- a classical functional neuroanatomical overview, combined with 
what has been learned more recently about neurotransmitters and receptors within the 
circuitry. For the usual reasons familiar to editors, all of the planned chapters were not 
written, and it proved impossible to devote single volumes to an internally consistent 
theme. Nevertheless, the series as a whole does survey the major sensory systems (retina 
by Ehinger and Dowling, part I; central visualpathways by Parnavelas, Dinopoulos, and 
Davies, part II; auditory system by Aitkin, part II; somatosensory system by Rustioni 
and Weinberg, part II; gustatory and related chemosensory systems by Kruger and 
Mantyh, part II; and olfactory system by Shipley, McLean, Zimmer, and Ennis, part 
III); two important parts of the motor system (cerebellum by Voogd, Jaarsma, and 
Marani, part III; basal ganglia by Gerfen and Wilson, part III); and three key parts of 

ix 



the limbic system (hypothalamus by Swanson, part I; amygdala by Price, Russchen, and 
Amaral, part I; hippocampus by Swanson, K6hler, and Bj6rklund, part I). The literature 
in the field as a whole continues to explode. Keeping pace is a challenge that we hope 
will be facilitated by the imminent revolutions in electronic publishing, database 
management, and computer graphics. 

Los Angeles, Lund and Stockholm in June 1995 

LARRY W. SWANSON ANDERS BJORKLUND TOMAS HOKFELT 
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CHAPTER I 

The cerebellum: chemoarchitecture and anatomy 

J. VOOGD, D. JAARSMA AND E. MARANI 

......... but the Spirits inhabiting the Cerebel perform unperceivedly and silently their 
Work of Nature without our Knowledge or Care. 

Thomas Willis. Of the Anatomy of the Brain. Englished by Samual Pordage, Esquire, 
London. Printed for Dring, Harper, Leigh and Martyn, 1681. Facsimile Edition, 
McGill University Press, Montreal, 1965. p. 111. 

1. INTRODUCTION 

During the last 150 years the morphology of the cerebellum attracted numerous histol- 
ogists. Its relatively simple structure, with its three-layered cortex and clearly defined 
afferent and efferent connections made it one of the favourite sites in the brain to test 
out new hypotheses on the connectivity, the development and chemical interaction in 
nervous tissue. We have attempted to review present knowledge about the external and 
internal morphology of the cerebellum and to relate the 'classical' topography of the 
cerebellum to the more recently discovered chemical specificity of its neurons and 
afferent and efferent pathways. Not all what is new in the histochemistry of the cerebel- 
lum is relevant to a better understanding of its chemoarchitecture. This review, there- 
fore, does not pretend to be complete. It is focussed on afferent and intrinsic connections 
of the cerebellum. The efferent connections of the cerebellum to the brain stem and the 
spinal cord have not been systematically covered. 

2. CYTOLOGY OF THE CEREBELLAR CORTEX 

A complete description of the histology of the cerebellar cortex was given by Ramon 
y Cajal (1911) (Figs 1 and 4). More recently the anatomy of the cortex including its 
ultrastructure was reviewed by Braitenberg and Atwood (1958), Eccles et al. (1967), Fox 
et al. (1967), Mugnaini (1972), and Palay and Chan-Palay (1974). Three layers are 
distinguished in the cortex (Fig. 3). The granular layer borders on the central white 
matter of the cerebellum. The Purkinje cell layer contains the cell bodies of the Purkinje 
cells, that are arranged in a single row. The perikarya of the Bergmann glia (the Golgi 
epithelial cells) are intercallated between the larger Purkinje cells (Fig. 9A). The molec- 
ular layer has a low cell content. It contains the dendritic arbors of the Purkinje cells 
and the Bergmann glial fibers, which run up to the pial surface where they constitute 
the external glial limiting membrane. The morphology of the cerebellar cortex can be 
characterized as a lattice: '... it can only be represented in two planes perpendicular to 
each other and having definite relations to the longitudinal and transversal axes of the 

Handbook of Chemical Neuroanatomy, Vo112. Integrated Systems of the CNS, Part IH 
L.W. Swanson, A. Bj6rklund and T. H6kfelt, editors 
�9 1996 Elsevier Science B.V. All rights reserved. 
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Fig. 1. Cerebellar cortical circuits. Top. Diagram showing the main mossy fiber-granule cell-Purkinje cell circuit 
and the innervation of the granule cells by the axonal plexus of the Golgi cell. A: mossy fiber; a: granule cell; 
B: Purkinje cell axon; b: parallel fiber; c: Golgi cell; d: Purkinje cell. Bottom. Similar diagram showing the main 
cortical circuit and the connection of the basket cell with the Purkinje cell somata. A: mossy fiber; a: granule 
cell; B: Purkinje cell axon; b: basket cell; C: climbing fiber; c: Purkinje cell soma. Redrawn from Ramon y Cajal 
(1911). 
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Fig. 2. Diagrams  of the cerebellar circuit. Inhibi tory neurons  are indicated in black. A. Main  circuit. B. Cortical  
in terneurons  and recurrent  pathways.  Abbreviat ions:  B = basket  cell; cf = climbing fiber; G = Golgi  cell; G R  = 
granule cell; IO = inferior olive; mf  = mossy fiber; nc = nucleocortical  axons; no = nucleo-ol ivary axons; pcc = 
recurrent  Purkinje cell axon collaterals; P cell = Purkinje cell; P C N  = precerebellar nuclei; p f -  parallel fiber; 
pi = pinceau of basket  cell axons; S = stellate cell; UBC = unipolar  brush cell; 1 = extracerebellar mossy fiber; 
2 - nucleo-cortical mossy fiber; 3 - mossy fiber collateral of  uni-polar  brush cell. 

animal. The whole three dimensional structure, therefore, cannot be obtained by rota- 
tion but by translation in two directions, thus producing a lattice' (Braitenberg and 
Atwood, 1958, p. 1). 

The elements of the main cerebellar circuit were discovered by Ramon y Cajal (1888, 
1911). The electrophysiological properties of the circuit were established by Eccles et al. 
(1967). The main circuit (Figs 1 and 2) consists of the mossy fiber afferent system, that 
terminates on the granule cells; the granule cell axons that ascend to the molecular layer 
and bifurcate into parallel fibers, that run in the long axis of the folium and terminate 
on the Purkinje cells and the projection of the Purkinje cells to the cerebellar or vestib- 
ular nuclei. Each Purkinje cell is innervated by a single climbing fiber (Ramon y Cajal, 
1911; Eccles et al., 1966a) that takes its origin from the contralateral inferior olive. The 
synaptic connections of mossy fibers, parallel fibers and climbing fibers are excitatory. 
The Purkinje cells are inhibitory and use gamma aminobutyric acid (GABA) as a 
transmitter (Ito and Yoshida, 1964). Small interneurons of the cerebellar cortex (stellate, 
basket and Golgi cells) receive a parallel fiber input and constitute inhibitory feed back 
and feed forward loops terminating on the granule cells and the Purkinje cells (Figs 1, 
2 and 4). The main determinant of the firing rate of Purkinje cells is the mossy fiber- 
parallel fiber system. Excitatory coupling between climbing fibers and Purkinje cells is 
very strong, but the frequency of the complex spikes evoked in Purkinje cells by the 
climbing fiber is too low to contribute significantly to its firing rate. The function of the 
climbing fibers, therefore, is one of the main problems in cerebellar neurobiology. 
Purkinje cells project to the cerebellar or the vestibular nuclei, where their axons termi- 
nate with inhibitory synapses. The cerebellar nuclei receive their excitatory drive from 
collaterals of the mossy and the climbing fibers. 
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Fig. 3. A. Nissl-stained section of the cerebellar cortex of the cat. G = Golgi cell; Gr = granule cells; P = 
Purkinje cell, asterisks: protoplasmatic islands of Held. Bar = 20 r B. diagram of the cerebeUar cortex of 
Purkinje (1837). 

Granule cells are small neurons located in cell nests in the granular layer. Cell-free 
spaces in the granular layer, that are known as the protoplasmatic islands of Held, 
contain the terminals of the mossy fibers (Fig. 3A, asterisks). Mossy fibers originate 
from many different sites in the spinal cord and the brain stem and constitute the main 
afferent system of the cerebellar cortex. Mossy fibers are myelinated fibers that branch 
extensively within the cerebellar white matter and the granular layer. They terminate 
with large irregular swellings (the mossy fiber rosettes, Figs 1, 5 and 6) that are located 
along or at the end of the axon. Each rosette forms the center of a complex synapse 
(cerebellar glomerulus) between the mossy fiber rosette, the dendrites of several granule 
cells and the terminals of one type of short axon (Golgi) cell of the cerebellar cortex. 
More than one mossy fiber rosette may be present within a protoplasmatic island. 

Granule cells possess 3-4 short dendrites, terminating in claw-like excrescenses 
(Fig.7). The thin, unmyelinated axon ascends towards the molecular layer, where it 
bifurcates in the form of a T. The two branches, that are known as the parallel fiber, 
pursue a straight course in the long axis of the folia, parallel to the thousands of other 
parallel fibers that constitute the bulk of the molecular layer. 

Parallel fibers synapse with dendrites of Purkinje cells and short axon cells in the 
molecular layer. Both the ascending portion of the granule cell axon and the parallel 
fiber are beaded. These varicosities probably correspond to the synaptic sites (Fig. 
7D-E). Parallel fibers are very long. In monkeys their length varied between 0.8 and 5 
mm. (Fox and Barnard, 1957). Maximal lengths of parallel fibers of 4.6-5.0 mm were 
reported for the rat (Brand et al., 1976; Schild, 1980; Mugnaini, 1983). The mean length 
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F i g .  4. Semidiagrammatic parasagittal section through a folium of the mammalian cerebellum, based on data 
from Golgi-stained material�9 A: molecular layer; B: granular layer; C: white matter; a: Purkinje cell; b: basket 
cells of the lower molecular layer; d: terminal basket formation of the basket cell axon; e: superficial stellate 
cells; f: Golgi cell; g: granule cells with their ascending axons; h: mossy fibers; i: the bifurcation of the granule 
cell axons; j: epithelial glial cell; m: astrocyte of the granular layer; n: climbing fiber; o: branching point of 
Purkinje cell recurrent axon collaterals. Redrawn from Ramon y Cajal (1911). 

of parallel fibers of 4.4 mm, measured after microinjections of biocytin in the granular 
layer in the rat (Pichitpornchai et al., 1994) is close to the mean length of these fibers 
of 5 mm, estimated with stereological techniques by Harvey and Napper (1988). The 
two branches of the parallel fiber are of equal length (Pichitpornchai et al., 1994). 
Shorter parallel fibers are located at the base of the molecular layer (mean branch length 
2.08 mm), they become progressively longer as they approach the pial surface (mean 
branch length 2.35 mm: Pichitpornchai et al., 1994). Parallel fibers in the superficial 
molecular layer are of a smaller calibre than deep parallel fibers (Fox and Barnard, 1957, 
monkey). A similar increase in size of the parallel fibers from superficial to deep laminae 
of the molecular layer was noticed by Pichitpornchai et al. (1994) in the rat. They also 
observed proximo-distal tapering of parallel fibers. Van der Want et al. (1985a,b) 
observed corresponding differences in synaptic size in superficial and deep layers of the 
molecular layer in the cat. The size and the spacing of the varicosities along the parallal 
fibers was found to be correlated with their caliber. The mean interval between two 
varicosities was 5.2 ~tm for the parallel fibers, 4.02 ~tm for the ascending axon of the 
granule cell (Pichitpornchai et al., 1994). The lamination in the molecular layer may be 
the expression of a deep to superficial gradient in the development of the parallel fibers 



Ch. I J. Voogd, D. Jaarsma and E. Marani 

Fig. 5. Mossy fiber rosettes in the granular layer. Left. Mossy fiber rosettes from neurons of the lateral reticular 
nucleus, labelled with antegrade transport of Phasaeolus vulgaris lectin. Bar = 25/lm. Right: Mossy fibers, 
Golgi impregnation. Cajal (1911). Abbreviations: a = large, terminal rosettes; b = rosettes 'en passage'; c = 
small rosette 'en passage'; G = granular layer; M - molecular layer; W = white matter. Courtesy of Dr. T.J.H. 
Ruigrok. 

(Pellegrino and Altman, 1979). A population of thick, short parallel fibers was noticed 
by Pitchitpornchai et al. (1994) in the deep parts of the molecular layer. Deep lying 
parallel fibers may be myelinated and are one of the constituents of the supraganglionic 
plexus located above the Purkinje cells (Mugnaini, 1972). 

The mossy fiber-parallel fiber-Purkinje cell pathway is characterized by a large 
divergence. Each mossy fiber terminates on a great number of granule cells and each 
granule cell contacts hundreds of Purkinje cells along its parallel fiber. An average 
parallel fiber with a length of 6 mm forms approximately 1100 boutons (Brand et al., 
1976). A portion of the molecular layer 6 mm wide contains approximately 750 Purkinje 
cell dendritic sheets (Brand and Mugnaini, 1976). This number is somewhat lower than 
the number of available boutons, when a parallel fiber would synapse once with each 
Purkinje cell it meets on its way (Brand et al., 1976). It is higher than the estimate of 
Napper and Harvey (1988b) in the rat that 15% of the boutons on parallel fibers synapse 
with non-Purkinje cells and that the rest synapses once with half of the Purkinje cell 
dendritic sheets it meets on its way. The granule cell/Purkinje cell ratio was estimated 
at 274/1 by Harvey and Napper (1988) and at 350-500/1 for different lobules of rat 
vermis by Drfige et al. (1986). Napper and Harvey (1988) concluded that there are some 
175.000 parallel fiber synapses on a single Purkinje cell of the rat. Fox et al. (1967) 
arrived at a number of 120.000 in monkeys. 

The actual strength of the convergence of individual mossy fibers to Purkinje cells 
depends on the distribution of their mossy fiber rosettes. Electrophysiological studies 
of Bower and Woolston (1983) in the rat demonstrated that Purkinje cells are most 
responsive to mossy fiber input that reaches the granule cells located immediately below 
them. Llinas (1982) explained this strong radial connectivity by the greater number of 
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Fig. 6. Drawing of horizontal section through rat cerebellum showing orientation of mossy fibers. A. Elliptical 
segment or stripe of mossy fiber terminals in the medial portion of the anterior lobe showing the strong 
caudal-rostral organization of the terminal neuropil. Note the small cluster of granule cell bodies at the open 
arrow. B. Single mossy fiber from the next adjacent section showing the almost linear caudal-rostral pattern 
of the related terminals and small groups of parallel fibers (pf). a: View of rat cerebellum from the above 
showing approximate position of the field illustrated (note square and arrow), b: Medial sagittal section 
through cerebellum showing approximate location and plane of section. Abbreviations: fp = fissura prima; 
Isim = lobulus simplex; crI = crus I; fsp = fissura superior posterior; fpl = fissura posterolateralis; pf - parallel 
fiber. Golgi modification; 21-day-old rat. Scheibel (1977). 

synapses with Purkinje cells on the ascending portion of the parallel fiber. However, 
according to Napper and Harvey (1988) the synapses on ascending portions of parallel 
fibers would account for only 3% of the total number of synapses of these fibers. 
Pichitpornchai et al. (1994), who observed a closer spacing of varicosities on the ascend- 
ing axon and the proximal branches of the parallel fibers than on their distal branches, 
concluded that parallel fibers will exert a graded synaptic influence on their target 
Purkinje cells, with the most powerful influence occurring on cells located around the 
proximal regions of the fibers where they bifurcate. Mossy fiber terminal branches in 
the granular layer are oriented longitudinally, in the same plane as the Purkinje cells 
(Scheibel, 1977), (Fig. 6) (see also Section 6.4.2.). Mossy fibers, therefore, preferentially 
activate longitudinally oriented patches of Purkinje cells. 

Different types of mossy fiber rosettes were described by Brodal and Drablos (1963) 
with the Glees and Rheumont-Lhermitte silver impregnations and the Golgi method in 
rat and cat. Highly branching mossy fibers terminating in small, relatively simple 
rosettes, located along or at the end of the fiber, occur in all parts of the cerebellum. 
Large rosettes, consisting of aggregations of larger and smaller argyrophilic particles, 
interconnected by fiber fragments occur exclusively in nodulus and adjoining uvula, 
lingula and flocculus. 

The dendritic tree of the Purkinje cell is flattened in a plane perpendicular to the long 
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