

HANDBOOK OF CHEMICAL NEUROANATOMY

Volume 12

L.W. Swanson

INTEGRATED SYSTEMS OF THE CNS PART III

This Page Intentionally Left Blank

HANDBOOK OF CHEMICAL NEUROANATOMY

Series Editors: A. Björklund and T. Hökfelt

Volume 12

INTEGRATED SYSTEMS OF THE CNS, PART III Cerebellum, Basal Ganglia, Olfactory System

Editors:

L.W. SWANSON

Department of Biological Sciences, University of Southern California, Los Angeles, CA, U.S.A.

A. BJÖRKLUND

Department of Medical Cell Research, University of Lund, Lund, Sweden

T. HÖKFELT

Department of Neuroscience, Histology, Karolinska Institute, Stockholm, Sweden

1996

ELSEVIER

Amsterdam – Lausanne – New York – Oxford – Shannon – Tokyo

© 1996 Elsevier Science B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the Publisher, Elsevier Science B.V., Copyright and Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of the rapid advances in the medical sciences, the Publisher recommends that independent verification of diagnoses and drug dosages should be made.

Special regulations for readers in the USA. This publication has been registered with the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA. All other copyright questions, including photocopying outside the USA, should be referred to the Publisher.

ISBN 0-444-82451-0 (volume) ISBN 0-444-90340-2 (series)

This book is printed on acid-free paper.

Published by: Elsevier Science B.V. P.O. Box 211 1000 AE Amsterdam The Netherlands

Dedicated to János Szentágothai and Walle J.H. Nauta This Page Intentionally Left Blank

List of contributors

MATTHEW ENNIS

Department of Anatomy
The University of Maryland School of
Medicine
Baltimore, MD 21201
U.S.A.

CHARLES R. GERFEN

Laboratory of Systems Neuroscience National Institute of Mental Health Bldg 36 Room 2D-10 Bethesda, MD 20892 U.S.A.

D. JAARSMA

Department of Anatomy Erasmus University Medical Center P.O. Box 1738 3000 DR Rotterdam The Netherlands

E. MARANI

Department of Physiology Leiden University Rijnsburgerweg 10 2300 RC Leiden The Netherlands

JOHN H. MCLEAN

Division of Basic Medical Sciences Memorial University of Newfoundland St. John's, Newfoundland Canada A1B 3V6

MICHAEL T. SHIPLEY

Department of Anatomy
The University of Maryland School of
Medicine
Baltimore, MD 21201
U.S.A.

J. VOOGD

Department of Anatomy Erasmus University Medical Center P.O. Box 1738 3000 DR Rotterdam The Netherlands

CHARLES J. WILSON

Department of Anatomy and Neurobiology University of Tennessee School of Medicine Memphis, TN U.S.A.

LEE A. ZIMMER

Department of Anatomy
The University of Maryland School of
Medicine
Baltimore, MD 21201
U.S.A.

This Page Intentionally Left Blank

Preface

It is with a mixture of pleasure and sadness that we dedicate this third volume of the *Integrated Systems* series of the *Handbook of Chemical Neuroanatomy* to the memory of two outstanding structural neuroscientists, János Szentágothai and Walle J.H. Nauta, who are widely regarded as having led the Romantic School of neuroanatomy through the Twentieth Century. Szentágothai was born on October 31, 1912, in Budapest, and passed away on September 8, 1994 in his native city. He was a student of Cajal's friend von Lenhossék, and like Cajal made enduring contributions to our understanding of many components of the nervous system, including (roughly in chronological order) the autonomic system, spinal cord, vestibulo-ocular and stretch reflex circuitry, neuroendocrine system, cerebellum, thalamus, and cerebral cortex. What sets his work apart from many of his contemporaries was the ability to generalize sensibly. This led, for example, to the concepts of synaptic glomeruli and neuronal modules, and to the synthesis for which he will always be remembered, *The Cerebellum as a Neuronal Machine*, published in 1967 with his collaborators John Eccles and Masao Ito.

Nauta was born on June 8, 1916 in Medan, Indonesia; received the M.D. and Ph.D. degrees at the University of Utrecht; served the last 30 years of his career at the Massachusetts Institute of Technology; and died on March 24, 1994. He perhaps will be remembered longest for the 'Nauta method', the first selective silver impregnation technique for degenerating axons. It was introduced in 1950 and variants were the method of choice for tracing axonal connections for about 25 years, until the use of more sensitive intraaxonal transport techniques became widespread. However, Nauta was a brilliant writer and an inspiring lecturer; and he published very influential experimental analyses of many forebrain systems in a variety of mammals. The limbic system and basal ganglia were his specialties, and indeed his work with Mehler on the lentiform nucleus of the cat and monkey was the first paper published in *Brain Research* (1:3-42, 1966) and is a classic with regard to both style and content.

We are profoundly grateful to the authors who have committed so much time and thoughtfulness to the chapters in the third part of the Integrated Systems component of the *Handbook*. When planning began in 1983, we had hoped to review each of the major sensory and motor systems, along with parts of the broader system that controls motivated and emotional behavior. Furthermore, each chapter was to be written from a dual perspective – a classical functional neuroanatomical overview, combined with what has been learned more recently about neurotransmitters and receptors within the circuitry. For the usual reasons familiar to editors, all of the planned chapters were not written, and it proved impossible to devote single volumes to an internally consistent theme. Nevertheless, the series as a whole does survey the major sensory systems (retina by Ehinger and Dowling, part I; central visual pathways by Parnavelas, Dinopoulos, and Davies, part II; auditory system by Aitkin, part II; somatosensory system by Rustioni and Weinberg, part II; gustatory and related chemosensory systems by Kruger and Mantyh, part II; and *olfactory system* by Shipley, McLean, Zimmer, and Ennis, part III); two important parts of the motor system (cerebellum by Voogd, Jaarsma, and Marani, part III; basal ganglia by Gerfen and Wilson, part III); and three key parts of the limbic system (hypothalamus by Swanson, part I; amygdala by Price, Russchen, and Amaral, part I; hippocampus by Swanson, Köhler, and Björklund, part I). The literature in the field as a whole continues to explode. Keeping pace is a challenge that we hope will be facilitated by the imminent revolutions in electronic publishing, database management, and computer graphics.

Los Angeles, Lund and Stockholm in June 1995

LARRY W. SWANSON

ANDERS BJÖRKLUND

TOMAS HÖKFELT

Contents

I. THE CEREBELLUM, CHEMOARCHITECTURE AND ANATOMY – J. VOOGD, D. JAARSMA AND E. MARANI

1.	Introduction					
2.	Cytology of the cerebellar cortex					
3.	Chemical anatomy of the cerebellar cortex					
		Purkinje cells				
		3.1.1.	Gamma-aminobutyric acid (GABA), glutamic acid			
			decarboxylase (GAD) and the GABA-transporters in			
			Purkinje cells	17		
		3.1.2.	Motilin and taurine in Purkinje cells	21		
		3.1.3.	Calcitonin gene-related peptide (CGRP), acetylcholin-			
			esterase (AChE), somatostatin and tyrosine hydroxylase			
			in Purkinje cells	23		
		3.1.4.	The localization of the IP ₃ receptor and the intracellular			
			calcium stores of Purkinje cells	24		
		3.1.5.	Protein kinase C in Purkinje cells	32		
		3.1.6.	cGMP, cGMP-dependent protein kinase and nitric oxide			
			synthase in Purkinje cells	34		
		3.1.7.	Calcium-binding proteins in Purkinje cells	36		
		3.1.8.	Other specific biochemical markers for Purkinje cells	38		
		3.1.9.	Cytoskeleton and metabolism of Purkinje cells	43		
		3.1.10.				
			protein in Purkinje cells	44		
		3.1.11.	Immunoreactivity of Purkinje cells in paraneoplastic			
			diseases	47		
	3.2		ory pathways	49		
		3.2.1.	Mossy fibers	51		
		3.2.2.	<u>U</u>	55		
		3.2.3.	Granule cells and parallel fibers	57		
	3.3.		ration of glutamate receptors	60		
		3.3.1	Ionotropic glutamate receptors	60		
	2.4	3.3.2.	Metabotropic glutamate receptors	72		
	3.4. Nitric oxide: the cerebellar localization of nitric oxide			76		
	2.5	synthase, guanylate cyclase and cyclic GMP				
	3.5.					
	3.6.		eurons of the cerebellar cortex	81		
		3.6.1	Stellate and basket cells	84		
		3.6.2.	č č	85		
	2.7	3.6.3.	Unipolar brush cells	89		
	3.7.		ration of GABA receptors and glycine receptors	93		
		3.7.1.	GABA _A receptors	93		

		3.7.2.	GABA _B receptors	100	
		3.7.3.	Glycine receptors	101	
	3.8.				
	3.9.		nalamocerebellar connections and histaminergic		
		project	ions	111	
	3.10.	ergic systems and acetylcholinesterase (AChE) in the			
		cerebel		113	
		3.10.1.	Distribution of choline acetyltransferase	113	
		3.10.2.	Cholinergic receptors	121	
		3.10.3.	Acetylcholinesterase	127	
		Neurog		128	
4.			my of the mammalian cerebellum	133	
5.	The o		ır nuclei	138	
	5.1.	Subdiv	ision of the cerebellar nuclei	140	
		5.1.1.	The cerebellar nuclei of the cat	146	
		5.1.2.	The cerebellar nuclei of primates	148	
		5.1.3.	The cerebellar nuclei of the rat	151	
	5.2.		ABAergic nucleo-olivary projection neurons of the		
			lar nuclei	154	
	5.3.		cortical and intrinsic neurons of the cerebellar nuclei	158	
	5.4.		ABAergic projection neurons of the cerebellar nuclei	160	
	5.5.		nt connections of the cerebellar nuclei: Purkinje cell axons	164	
	5.6.		erebellar afferents of the cerebellar nuclei: collaterals		
			sy and climbing fibers	165	
	5.7.		erebellar afferents of the cerebellar nuclei: serotoninergic,		
_			energic, dopaminergic and peptidergic projections	167	
6.			afferent connections of the cerebellar cortex: corticonu-		
			rebellar and mossy fiber connections and cytochemical	150	
	maps			170	
	6.1.		artments and corticonuclear projection zones:	177	
			ations with cytochemical maps	177	
		6.1.1.	Corticonuclear projection zones in the cat. Correlation		
			with white matter compartments and cytochemical	177	
		6.1.2.	zones Compartments and corticonuclear projection zones	1//	
		0.1.2.	in monkeys	184	
		6.1.3.	Parasagittal zonation in the cerebellar cortex: Antigenic	104	
		0.1.5.	compartmentation for Zebrin and other markers	189	
		6.1.4.	The corticonuclear projection of the cerebellum of	107	
		0.1.4.	the rat. Correlations with Zebrin-antigenic		
			compartmentalization	201	
		6.1.5.	The corticovestibular and corticonuclear projections	201	
		0.1.5.	of the flocculus and the caudal vermis. Correlations with		
			cytochemical zones and compartments	207	
	6.2.	Region	all differences in the development of the cerebellum	217	
	6.3.		ganization of the olivocerebellar projection	225	
	0.5.	6.3.1.	Configuration and ultrastructure of the inferior olive	225	
		6.3.2.	Afferent connections of the inferior olive	233	
		0.0.2.	initial connections of the micror onto	200	

		(6.3.3.	The connections between the inferior olive and	240
			(24	the cerebellum	242
		,	6.3.4.	The distribution of peptides and calcium binding	275
		6.4.	Мосси	proteins in climbing fibers and cells of the inferior olive fiber systems	284
			6.4.1.	Concentric and discontinuous, lobular arrangement	207
		•	0.4.1.	of mossy fiber systems	284
			6.4.2.	Zonal arrangement in the termination of mossy fibers:	20.
		·	o. .	Correlations with cytochemical maps	293
		(6.4.3.	The somatotopical organization in mossy fiber pathways	299
			6.4.4.	Collateral projections of mossy fiber systems to the	
				cerebellar nuclei. The nuclear projection of the	
				red nucleus	302
		(6.4.5.	The chemoarchitecture of mossy fibers	303
	7.	Postsc	ript		305
		7.1.	Bioche	mical correlates of cell types and fiber systems	305
		7.2.	Neurot	transmitters and their receptors	307
				es and zones	307
				le of biochemically defined systems in cerebellar motor	
	_		control		309
	8.	Ackno		ements	310
	9.	Refere	ences		311
II.		E D 4 C			
11.	TH	LE BAS	AL GA	ANGLIA – C.R. GERFEN AND C.J. WILSON	
11.					251
11.	1.	Introd	uction		371
11.		Introd Organ	uction ization	al overview	372
11.	1. 2.	Introd Organ 2.1.	uction ization Compa	al overview arisons between rodents and primates	372 376
11.	1. 2. 3.	Introd Organ 2.1. Cerebi	uction ization Compa ral cort	al overview	372 376 377
11.	1. 2.	Introd Organ 2.1. Cerebi Striatu	uction ization Compa ral cort im	nal overview arisons between rodents and primates tex input to striatum	372 376 377 379
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1.	uction ization Compa ral cort im Spiny J	nal overview arisons between rodents and primates tex input to striatum projection neuron	372 376 377 379 380
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1.	uction ization Comparal cortum Spiny 1	nal overview arisons between rodents and primates tex input to striatum projection neuron Cortical input	372 376 377 379 380 382
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1.	uction ization Compa ral cort im Spiny J	nal overview enrisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input	372 376 377 379 380 382 382
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1.	luction ization Comparal cortim Spiny 14.1.1.	nal overview Arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input	372 376 377 379 380 382
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1.	cuction ization Comparal cortum Spiny I 4.1.1. 4.1.2. 4.1.3.	nal overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide)	372 376 377 379 380 382 382
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1.	uction ization Comparal cortum Spiny 14.1.1.4.1.2.4.1.3.4.1.4.	nal overview Arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input	372 376 377 379 380 382 386 388
11.	1. 2. 3.	Introd Organ 2.1. (Cerebi Striatu 4.1.	uction ization Comparal cortum Spiny I 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6.	nal overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input	372 376 377 380 382 382 388 388 388
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1.	uction ization Comparal cortum Spiny p 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8.	nal overview Arisons between rodents and primates Atex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs	372 376 377 380 382 382 386 388 389 389 389
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1. 4	uction ization Comparal cortum Spiny I 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Striata	nal overview Arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs I interneurons	372 376 377 380 382 382 386 388 389 389 390 390
11.	1. 2. 3. 4.	Introd Organ 2.1. Cerebi Striatu 4.1.	uction ization Comparal cort im Spiny I 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Striata 4.2.1.	nal overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs I interneurons Cholinergic neurons	372 376 377 380 382 382 386 388 389 389 390 390
11.	1. 2. 3.	Introd Organ 2.1. Cerebi Striatu 4.1. 4.2.	uction ization Comparal cortum Spiny p 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Striata: 4.2.1. s pallic	nal overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs I interneurons Cholinergic neurons dus (external segment)	372 376 377 380 382 382 386 388 389 390 390 394 396
11.	1. 2. 3. 4.	Introd Organ 2.1. Cerebi Striatu 4.1. 4.2. Globu 5.1.	uction ization Comparal cortism Spiny I 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Striatal 4.2.1. s pallic Synapt	rail overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs I interneurons Cholinergic neurons dus (external segment) cic input	372 376 377 380 382 382 386 388 389 389 390 390 394 396
11.	1. 2. 3. 4.	Introd Organ 2.1. Cerebi Striatu 4.1. 4.2. Globu 5.1. 5.2.	uction ization Comparal cortism Spiny J 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Striatal 4.2.1. as pallic Synapt Output	rail overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs I interneurons Cholinergic neurons dus (external segment) tic input	372 376 377 380 382 382 386 388 389 389 390 394 396 397 399
11.	1. 2. 3. 4.	Introd Organ 2.1. Cerebi Striatu 4.1. 4.2. Globu 5.1. 5.2. Subtha	uction ization Comparal cortum Spiny I 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Striata 4.2.1. s pallic Synapt Output alamic	rail overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs I interneurons Cholinergic neurons dus (external segment) tic input t nucleus	372 376 377 380 382 382 388 389 389 390 390 390 390 400
11.	1. 2. 3. 4.	Introd Organ 2.1. Cerebi Striatu 4.1. 4.1. 5.2. Globu 5.1. 5.2. Subtha 6.1.	uction ization Comparal cortism Spiny I 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Striata 4.2.1. Is pallic Synapt Output alamic Synapt	ral overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs I interneurons Cholinergic neurons dus (external segment) tic input t nucleus tic input	372 376 377 380 382 382 388 389 390 390 391 392 400 400
11.	1. 2. 3. 4.	Introd Organ 2.1. Cerebi Striatu 4.1. 4.2. Globu 5.1. 5.2. Subtha 6.1. 6.2.	uction ization Comparal cortism Spiny I 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Striata 4.2.1. s pallic Synapt Output alamic Synapt Output Output	ral overview arisons between rodents and primates tex input to striatum projection neuron Cortical input Thalamic input Nigrostriatal dopamine input Spiny cell local collaterals inputs (GABA and peptide) Cholinergic input Striatal GABA interneuron inputs Somatostatin interneuron inputs Other inputs I interneurons Cholinergic neurons dus (external segment) tic input t nucleus tic input	372 376 377 380 382 382 388 389 389 390 390 390 390 400

		7.1.	Synaptic input to pars reticulata neurons	403
		7.2.	Synaptic input to pars compacta neurons	404
		7.3.	Projections of pars reticulata neurons	407
	8.	Conn	ectional organization of basal ganglia	409
	9.		ionship between cortex and basal ganglia	409
		9.1.	Topographic organization	410
		9.2.	Overlap of inputs: cortico-cortical organization	413
		9.3.	Striatal output systems: topography/convergence/divergence	418
		9.4.	Striatal outputs in relation to nigral outputs: dual output systems	421
			Summary of organization of cortico-basal ganglia circuits	425
	10.		al patch/matrix compartments	426
			Nigrostriatal dopamine system	427
			Striatal outputs	429
			Cortical inputs	431
			Thalamic afferents	435
			General patch-matrix organization	435
			Cortical organization related to striatal patch-matrix compartments	437
	11.		et/indirect striatal output systems	439
			Connectional basis	439
			Peptide basis	443
			Dopamine receptor-mediated regulation	447
			Other (non-dopaminergic) regulatory receptor systems in striatum	449
			Cellular interactions within the striatum	451
			Functional significance	453
	12		Regional differences	455
		Refer	owledgements	457 457
III.	тн	E OL:	FACTORY SYSTEM – M.T. SHIPLEY, J.H. MCLEAN, IMER AND M. ENNIS	
	L.73			
	1.		duction	469
			The olfactory epithelium	470
			T 10	400
			Two olfactory systems	473
	2	1.3.	Human diseases and the olfactory system	473
	2.	1.3. The r	Human diseases and the olfactory system nain olfactory bulb	473 474
	2.	1.3. The r	Human diseases and the olfactory system nain olfactory bulb Laminar organization	473 474 474
	2.	1.3. The r	Human diseases and the olfactory system nain olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer	473 474 474 474
	2.	1.3. The r	Human diseases and the olfactory system nain olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer	473 474 474 474 475
	2.	1.3. The r	Human diseases and the olfactory system main olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer 2.1.3. External plexiform layer	473 474 474 474 475 486
	2.	1.3. The r	Human diseases and the olfactory system main olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer 2.1.3. External plexiform layer 2.1.4. Mitral cell layer	473 474 474 474 475 486 488
	2.	1.3. The r	Human diseases and the olfactory system main olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer 2.1.3. External plexiform layer 2.1.4. Mitral cell layer 2.1.5. Internal plexiform layer	473 474 474 475 486 488 490
	2.	1.3. The r	Human diseases and the olfactory system main olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer 2.1.3. External plexiform layer 2.1.4. Mitral cell layer 2.1.5. Internal plexiform layer 2.1.6. Granule cell layer	473 474 474 475 486 488 490 491
	2.	1.3. The r	Human diseases and the olfactory system main olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer 2.1.3. External plexiform layer 2.1.4. Mitral cell layer 2.1.5. Internal plexiform layer 2.1.6. Granule cell layer 2.1.7. Mitral-granule cell interactions: Anatomical considerations	473 474 474 475 486 488 490 491 492
	2.	1.3. The r 2.1.	Human diseases and the olfactory system main olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer 2.1.3. External plexiform layer 2.1.4. Mitral cell layer 2.1.5. Internal plexiform layer 2.1.6. Granule cell layer 2.1.7. Mitral-granule cell interactions: Anatomical considerations 2.1.8. Subependymal zone	473 474 474 475 486 488 490 491 492 493
	2.	1.3. The r	Human diseases and the olfactory system main olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer 2.1.3. External plexiform layer 2.1.4. Mitral cell layer 2.1.5. Internal plexiform layer 2.1.6. Granule cell layer 2.1.7. Mitral-granule cell interactions: Anatomical considerations 2.1.8. Subependymal zone Transmitter receptors in the MOB	473 474 474 475 486 488 490 491 492 493 493
	2.	1.3. The r 2.1.	Human diseases and the olfactory system main olfactory bulb Laminar organization 2.1.1. Olfactory nerve layer 2.1.2. Glomerular layer 2.1.3. External plexiform layer 2.1.4. Mitral cell layer 2.1.5. Internal plexiform layer 2.1.6. Granule cell layer 2.1.7. Mitral-granule cell interactions: Anatomical considerations 2.1.8. Subependymal zone	473 474 474 475 486 488 490 491 492 493

	2.3.	Influence of the olfactory nerve on transmitter expression in MOB			
		neurons	493		
	2.4.	Functional organization of the MOB	496		
		2.4.1. Organization of olfactory nerve inputs to MOB	496		
		2.4.2. Broad topographic mapping	496		
		2.4.3. Neural processing in the glomerular layer	498		
		2.4.4. The mitral/granule cell inhibitory system	501		
		2.4.5. Glomerular versus infraglomerular inhibition	503		
	2.5.	Outputs of the MOB	504		
		2.5.1. Intrabulbar collaterals	504		
		2.5.2. Mitral/tufted cell projections beyond the MOB	504		
		2.5.3. Projections to olfactory cortex	505		
		2.5.4. Transmitter(s) mediating MOB to PC monosynaptic			
		excitation	506		
	2.6.	Centrifugal afferents to MOB	507		
3.	Prim	ary olfactory cortex	507		
	3.1.	Anterior olfactory nucleus (AON)	509		
		3.1.1. Architecture of AON	509		
		3.1.2. Inputs to AON	509		
		3.1.3. Outputs of AON	509		
		3.1.4. Organization of AON circuitry	510		
		3.1.5. Transmitters of AON	514		
		3.1.6. Transmitter receptors in AON	514		
		3.1.7. Functions of AON	515		
	3.2.	Rostral olfactory cortex	516		
		3.2.1. Indusium griseum	516		
		3.2.2. Anterior hippocampal continuation	516		
		3.2.3. Taenia tecta	516		
		3.2.4. Infralimbic cortex	518		
		3.2.5. Olfactory tubercle	518		
		3.2.6. Nucleus of the lateral olfactory tract (NLOT)	519		
	3.3.	Lateral olfactory cortex	519		
		3.3.1. Architecture of the lateral olfactory cortex	519		
		3.3.2. Neuron types in the piriform cortex	522		
		3.3.3. Connections of the lateral olfactory cortex	524		
		3.3.4. Transmitter receptors in the lateral olfactory cortex	529		
		3.3.5. Piriform cortex is a seizurogenic focus	529 532		
1	Tuta	3.3.6. Modeling of olfactory network function			
4.		gration of the main olfactory system with other functions	532 532		
	4.1. 4.2.	Odors and cognition Olfaction and taste/visceral integration	534		
	4.2.	Olfaction and motor activity	534		
	4.3. 4.4.	Olfaction and memory	536		
5.		accessory olfactory system	536		
٥.	5.1.	Accessory olfactory bulb	536		
	3.1.	5.1.1. Neurotransmitters in the AOB	537		
		5.1.2. Transmitter receptors in the AOB	538		
		5.1.3. Outputs of the AOB	539		
		5.1.4. Centrifugal afferents to AOB	539		
		J.1.7. Centinugal ancients to AOD	- シンプ		

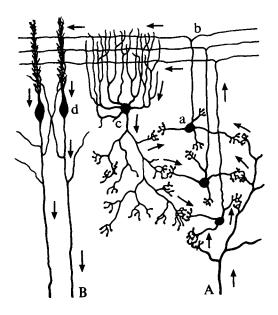
	5.2.	Higher	order connections of the accessory olfactory system	
		and rep	productive functions	539
	5.3.	Sexual	dimorphism of AOB and its target structures	541
6.	'Nor	ı-olfactoı	ry' modulatory inputs to the olfactory system	541
	6.1.	Choline	ergic innervation of the olfactory system	541
		6.1.1.	Cholinergic inputs to the MOB	541
		6.1.2.	Cholinergic inputs to the piriform cortex	544
	6.2.	Noradr	renergic (NE) innervation of the olfactory system	546
		6.2.1.	NE innervation of the olfactory bulb	546
		6.2.2.	NE inputs to the piriform cortex	548
	6.3.	Serotor	nin (5-HT) innervation of the olfactory system	550
		6.3.1.	5-HT innervation of the MOB	550
		6.3.2.	5-HT inputs to the piriform cortex	551
	6.4.	Dopam	nine (DA) innervation of the olfactory system	553
		6.4.1.	Dopamine (DA) innervation of the piriform cortex	553
	6.5.	Compa	arison of NE, 5-HT and DA inputs in the rat piriform cortex	553
	6.6.	Differe	ntial innervation of MOB and AOB	553
7.	Ack	nowledgr	ments	555
8.	8. Abbreviations9. References		555	
9.				556
SUBJ	ECT II	NDEX		575

CHAPTER I

The cerebellum: chemoarchitecture and anatomy

J. VOOGD, D. JAARSMA AND E. MARANI

....... but the Spirits inhabiting the Cerebel perform unperceivedly and silently their Work of Nature without our Knowledge or Care.


Thomas Willis. Of the Anatomy of the Brain. Englished by Samual Pordage, Esquire, London. Printed for Dring, Harper, Leigh and Martyn, 1681. Facsimile Edition, McGill University Press, Montreal, 1965. p. 111.

1. INTRODUCTION

During the last 150 years the morphology of the cerebellum attracted numerous histologists. Its relatively simple structure, with its three-layered cortex and clearly defined afferent and efferent connections made it one of the favourite sites in the brain to test out new hypotheses on the connectivity, the development and chemical interaction in nervous tissue. We have attempted to review present knowledge about the external and internal morphology of the cerebellum and to relate the 'classical' topography of the cerebellum to the more recently discovered chemical specificity of its neurons and afferent and efferent pathways. Not all what is new in the histochemistry of the cerebellum is relevant to a better understanding of its chemoarchitecture. This review, therefore, does not pretend to be complete. It is focussed on afferent and intrinsic connections of the cerebellum. The efferent connections of the cerebellum to the brain stem and the spinal cord have not been systematically covered.

2. CYTOLOGY OF THE CEREBELLAR CORTEX

A complete description of the histology of the cerebellar cortex was given by Ramon y Cajal (1911) (Figs 1 and 4). More recently the anatomy of the cortex including its ultrastructure was reviewed by Braitenberg and Atwood (1958), Eccles et al. (1967), Fox et al. (1967), Mugnaini (1972), and Palay and Chan-Palay (1974). Three layers are distinguished in the cortex (Fig. 3). The granular layer borders on the central white matter of the cerebellum. The Purkinje cell layer contains the cell bodies of the Purkinje cells, that are arranged in a single row. The perikarya of the Bergmann glia (the Golgi epithelial cells) are intercallated between the larger Purkinje cells (Fig. 9A). The molecular layer has a low cell content. It contains the dendritic arbors of the Purkinje cells and the Bergmann glial fibers, which run up to the pial surface where they constitute the external glial limiting membrane. The morphology of the cerebellar cortex can be characterized as a lattice: '... it can only be represented in two planes perpendicular to each other and having definite relations to the longitudinal and transversal axes of the

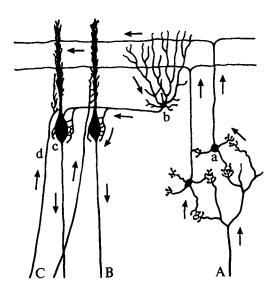


Fig. 1. Cerebellar cortical circuits. Top. Diagram showing the main mossy fiber-granule cell-Purkinje cell circuit and the innervation of the granule cells by the axonal plexus of the Golgi cell. A: mossy fiber; a: granule cell; B: Purkinje cell axon; b: parallel fiber; c: Golgi cell; d: Purkinje cell. Bottom. Similar diagram showing the main cortical circuit and the connection of the basket cell with the Purkinje cell somata. A: mossy fiber; a: granule cell; B: Purkinje cell axon; b: basket cell; C: climbing fiber; c: Purkinje cell soma. Redrawn from Ramon y Cajal (1911).

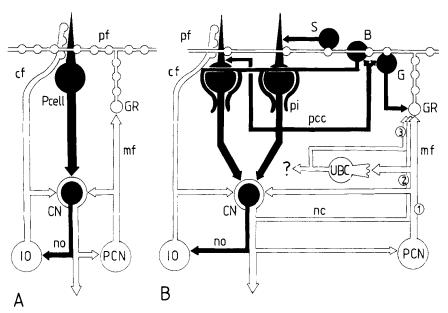


Fig. 2. Diagrams of the cerebellar circuit. Inhibitory neurons are indicated in black. A. Main circuit. B. Cortical interneurons and recurrent pathways. Abbreviations: B = basket cell; cf = climbing fiber; cf = climbing fib

animal. The whole three dimensional structure, therefore, cannot be obtained by rotation but by translation in two directions, thus producing a lattice' (Braitenberg and Atwood, 1958, p.1).

The elements of the main cerebellar circuit were discovered by Ramon y Cajal (1888, 1911). The electrophysiological properties of the circuit were established by Eccles et al. (1967). The main circuit (Figs 1 and 2) consists of the mossy fiber afferent system, that terminates on the granule cells; the granule cell axons that ascend to the molecular layer and bifurcate into parallel fibers, that run in the long axis of the folium and terminate on the Purkinje cells and the projection of the Purkinje cells to the cerebellar or vestibular nuclei. Each Purkinje cell is innervated by a single climbing fiber (Ramon y Cajal, 1911; Eccles et al., 1966a) that takes its origin from the contralateral inferior olive. The synaptic connections of mossy fibers, parallel fibers and climbing fibers are excitatory. The Purkinje cells are inhibitory and use gamma aminobutyric acid (GABA) as a transmitter (Ito and Yoshida, 1964). Small interneurons of the cerebellar cortex (stellate, basket and Golgi cells) receive a parallel fiber input and constitute inhibitory feed back and feed forward loops terminating on the granule cells and the Purkinje cells (Figs 1, 2 and 4). The main determinant of the firing rate of Purkinje cells is the mossy fiberparallel fiber system. Excitatory coupling between climbing fibers and Purkinje cells is very strong, but the frequency of the complex spikes evoked in Purkinje cells by the climbing fiber is too low to contribute significantly to its firing rate. The function of the climbing fibers, therefore, is one of the main problems in cerebellar neurobiology. Purkinje cells project to the cerebellar or the vestibular nuclei, where their axons terminate with inhibitory synapses. The cerebellar nuclei receive their excitatory drive from collaterals of the mossy and the climbing fibers.

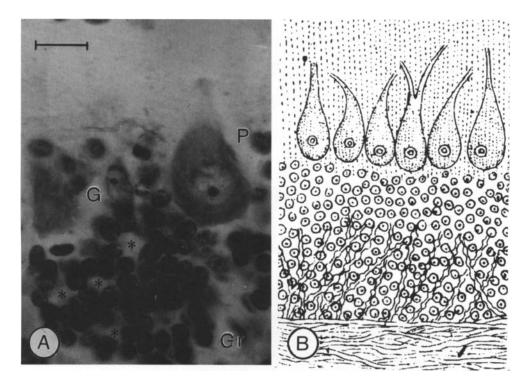


Fig. 3. A. Nissl-stained section of the cerebellar cortex of the cat. G = Golgi cell; G = granule cells; P = Purkinje cell, asterisks: protoplasmatic islands of Held. Bar = 20 μ m. B. diagram of the cerebellar cortex of Purkinje (1837).

Granule cells are small neurons located in cell nests in the granular layer. Cell-free spaces in the granular layer, that are known as the protoplasmatic islands of Held, contain the terminals of the mossy fibers (Fig. 3A, asterisks). Mossy fibers originate from many different sites in the spinal cord and the brain stem and constitute the main afferent system of the cerebellar cortex. Mossy fibers are myelinated fibers that branch extensively within the cerebellar white matter and the granular layer. They terminate with large irregular swellings (the mossy fiber rosettes, Figs 1, 5 and 6) that are located along or at the end of the axon. Each rosette forms the center of a complex synapse (cerebellar glomerulus) between the mossy fiber rosette, the dendrites of several granule cells and the terminals of one type of short axon (Golgi) cell of the cerebellar cortex. More than one mossy fiber rosette may be present within a protoplasmatic island.

Granule cells possess 3–4 short dendrites, terminating in claw-like excrescenses (Fig.7). The thin, unmyelinated axon ascends towards the molecular layer, where it bifurcates in the form of a T. The two branches, that are known as the parallel fiber, pursue a straight course in the long axis of the folia, parallel to the thousands of other parallel fibers that constitute the bulk of the molecular layer.

Parallel fibers synapse with dendrites of Purkinje cells and short axon cells in the molecular layer. Both the ascending portion of the granule cell axon and the parallel fiber are beaded. These varicosities probably correspond to the synaptic sites (Fig. 7D-E). Parallel fibers are very long. In monkeys their length varied between 0.8 and 5 mm. (Fox and Barnard, 1957). Maximal lengths of parallel fibers of 4.6–5.0 mm were reported for the rat (Brand et al., 1976; Schild, 1980; Mugnaini, 1983). The mean length

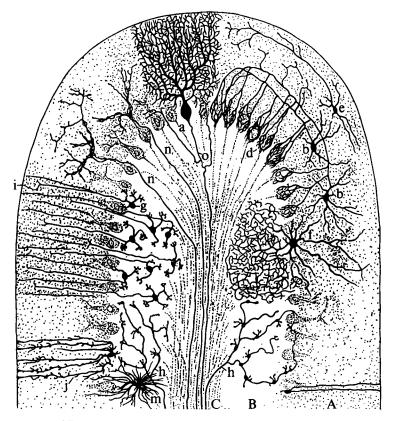


Fig. 4. Semidiagrammatic parasagittal section through a folium of the mammalian cerebellum, based on data from Golgi-stained material. A: molecular layer; B: granular layer; C: white matter; a: Purkinje cell; b: basket cells of the lower molecular layer; d: terminal basket formation of the basket cell axon; e: superficial stellate cells; f: Golgi cell; g: granule cells with their ascending axons; h: mossy fibers; i: the bifurcation of the granule cell axons; j: epithelial glial cell; m: astrocyte of the granular layer; n: climbing fiber; o: branching point of Purkinje cell recurrent axon collaterals. Redrawn from Ramon y Cajal (1911).

of parallel fibers of 4.4 mm, measured after microinjections of biocytin in the granular layer in the rat (Pichitpornchai et al., 1994) is close to the mean length of these fibers of 5 mm, estimated with stereological techniques by Harvey and Napper (1988). The two branches of the parallel fiber are of equal length (Pichitpornchai et al., 1994). Shorter parallel fibers are located at the base of the molecular layer (mean branch length 2.08 mm), they become progressively longer as they approach the pial surface (mean branch length 2.35 mm: Pichitpornchai et al., 1994). Parallel fibers in the superficial molecular layer are of a smaller calibre than deep parallel fibers (Fox and Barnard, 1957, monkey). A similar increase in size of the parallel fibers from superficial to deep laminae of the molecular layer was noticed by Pichitpornchai et al. (1994) in the rat. They also observed proximo-distal tapering of parallel fibers. Van der Want et al. (1985a,b) observed corresponding differences in synaptic size in superficial and deep layers of the molecular layer in the cat. The size and the spacing of the varicosities along the parallal fibers was found to be correlated with their caliber. The mean interval between two varicosities was 5.2 μ m for the parallel fibers, 4.02 μ m for the ascending axon of the granule cell (Pichitpornchai et al., 1994). The lamination in the molecular layer may be the expression of a deep to superficial gradient in the development of the parallel fibers

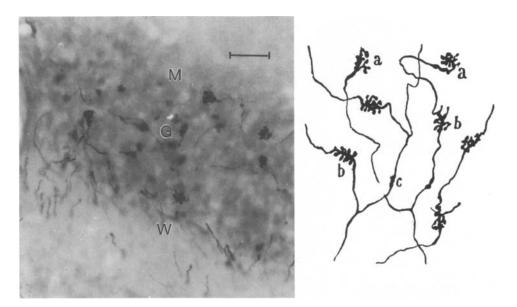


Fig. 5. Mossy fiber rosettes in the granular layer. Left. Mossy fiber rosettes from neurons of the lateral reticular nucleus, labelled with antegrade transport of *Phasaeolus vulgaris* lectin. Bar = $25 \mu m$. Right: Mossy fibers, Golgi impregnation. Cajal (1911). Abbreviations: a = large, terminal rosettes; b = rosettes 'en passage'; c = small rosette 'en passage'; G = granular layer; M = molecular layer; W = white matter. Courtesy of Dr. T.J.H. Ruigrok.

(Pellegrino and Altman, 1979). A population of thick, short parallel fibers was noticed by Pitchitpornchai et al. (1994) in the deep parts of the molecular layer. Deep lying parallel fibers may be myelinated and are one of the constituents of the supraganglionic plexus located above the Purkinje cells (Mugnaini, 1972).

The mossy fiber-parallel fiber-Purkinje cell pathway is characterized by a large divergence. Each mossy fiber terminates on a great number of granule cells and each granule cell contacts hundreds of Purkinje cells along its parallel fiber. An average parallel fiber with a length of 6 mm forms approximately 1100 boutons (Brand et al., 1976). A portion of the molecular layer 6 mm wide contains approximately 750 Purkinje cell dendritic sheets (Brand and Mugnaini, 1976). This number is somewhat lower than the number of available boutons, when a parallel fiber would synapse once with each Purkinje cell it meets on its way (Brand et al., 1976). It is higher than the estimate of Napper and Harvey (1988b) in the rat that 15% of the boutons on parallel fibers synapse with non-Purkinje cells and that the rest synapses once with half of the Purkinje cell dendritic sheets it meets on its way. The granule cell/Purkinje cell ratio was estimated at 274/1 by Harvey and Napper (1988) and at 350-500/1 for different lobules of rat vermis by Drüge et al. (1986). Napper and Harvey (1988) concluded that there are some 175.000 parallel fiber synapses on a single Purkinje cell of the rat. Fox et al. (1967) arrived at a number of 120.000 in monkeys.

The actual strength of the convergence of individual mossy fibers to Purkinje cells depends on the distribution of their mossy fiber rosettes. Electrophysiological studies of Bower and Woolston (1983) in the rat demonstrated that Purkinje cells are most responsive to mossy fiber input that reaches the granule cells located immediately below them. Llinas (1982) explained this strong radial connectivity by the greater number of

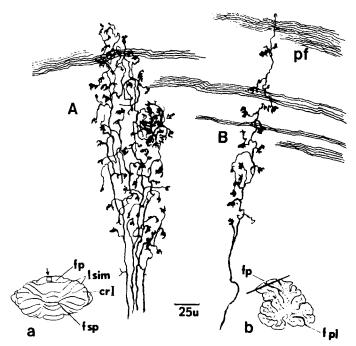
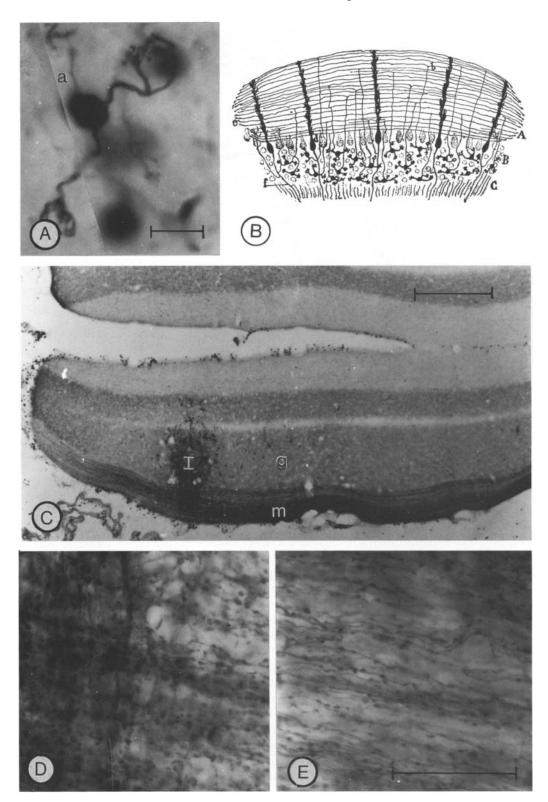



Fig. 6. Drawing of horizontal section through rat cerebellum showing orientation of mossy fibers. A. Elliptical segment or stripe of mossy fiber terminals in the medial portion of the anterior lobe showing the strong caudal-rostral organization of the terminal neuropil. Note the small cluster of granule cell bodies at the open arrow. B. Single mossy fiber from the next adjacent section showing the almost linear caudal-rostral pattern of the related terminals and small groups of parallel fibers (pf). a: View of rat cerebellum from the above showing approximate position of the field illustrated (note square and arrow). b: Medial sagittal section through cerebellum showing approximate location and plane of section. Abbreviations: fp = fissura prima; fisim = fissura posterolateralis; fisim = fisim posterolateralis; fisim = fisim posterolatera

synapses with Purkinje cells on the ascending portion of the parallel fiber. However, according to Napper and Harvey (1988) the synapses on ascending portions of parallel fibers would account for only 3% of the total number of synapses of these fibers. Pichitpornchai et al. (1994), who observed a closer spacing of varicosities on the ascending axon and the proximal branches of the parallel fibers than on their distal branches, concluded that parallel fibers will exert a graded synaptic influence on their target Purkinje cells, with the most powerful influence occurring on cells located around the proximal regions of the fibers where they bifurcate. Mossy fiber terminal branches in the granular layer are oriented longitudinally, in the same plane as the Purkinje cells (Scheibel, 1977), (Fig. 6) (see also Section 6.4.2.). Mossy fibers, therefore, preferentially activate longitudinally oriented patches of Purkinje cells.

Different types of mossy fiber rosettes were described by Brodal and Drabløs (1963) with the Glees and Rheumont-Lhermitte silver impregnations and the Golgi method in rat and cat. Highly branching mossy fibers terminating in small, relatively simple rosettes, located along or at the end of the fiber, occur in all parts of the cerebellum. Large rosettes, consisting of aggregations of larger and smaller argyrophilic particles, interconnected by fiber fragments occur exclusively in nodulus and adjoining uvula, lingula and flocculus.

The dendritic tree of the Purkinje cell is flattened in a plane perpendicular to the long

