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DEDICATION

Dedicated to Anthony James (Tony) Pawson (1952–2013), in recognition of his outstanding contributions to
cell biology and our understanding of intracellular communication mechanisms…
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EDITORS-IN-CHIEF

Ralph A Bradshaw is Professor Emeritus in the Department of Physiology and Biophysics at

the University of California, Irvine. Prior to that he was on the faculty of the Department of

Biological Chemistry, Washington University School of Medicine in St. Louis, MO and was

Professor and Chair of the Department of Biological Chemistry at University of California,

Irvine. From 2006 to 2015, he was a member of the Mass Spectrometry Facility and Professor

of Pharmaceutical Chemistry at the University of California, San Francisco. He holds degrees

from Colby College and Duke University and was a post-doctoral fellow at Indiana Uni-

versity and the University of Washington. He has served as president of FASEB, was the

founding president of the Protein Society and was the treasurer of the American Society for

Biochemistry and Molecular Biology. His research has focused on protein chemistry and

proteomics, with emphasis on the structure and function of growth factors and their re-

ceptors, particularly nerve growth factor and fibroblast growth factor, and the involvement

of receptor tyrosine kinases in cell signaling. He has also studied the role of proteolytic

processing and N-terminal modification in protein stability and turnover.

Philip D Stahl is E. Mallinckrodt Jr. Professor Emeritus at Washington University School of

Medicine in St. Louis, MO. He was educated at West Virginia University with post-doctoral

work at Vanderbilt University. He served as Head of the Department of Cell Biology and

Physiology and Director of the Division of Biology and Biomedical Sciences at Washington

University. He has been the recipient of many awards including a MERIT award from the

NIH and the WICB Senior Recognition award given by the American Society for Cell Biology

in recognition of his work supporting the advancement of women in science. Among

StahlLab contributions are the discovery of the lysosomal enzyme clearance pathway now

implemented in the treatment of lysosomal storage disease, discovery of the innate immune

receptor, the mannose receptor, discovery of the exosome secretion pathway, and the role of

Rab5 and Arf6 in endocytosis.

Currently his research focuses on endocytosis, signal transduction, and exosome bio-

genesis and secretion.
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Gerald Hart is the Director and DeLamar Professor of Biological Chemistry at Johns

Hopkins Medical School. He began his research on glycoconjugates about 40 years ago as a

graduate student, and he has been active in the field of Glycobiology ever since. Among his

research accomplishments, he determined the minimal sequence requirements for N-linked

glycosylation while a postdoc in William Lennarz’s lab, and he collaborated with Paul

Englund’s group at Johns Hopkins to elucidate the biosynthetic pathway for GPI-anchors. In

the early 1980s, while probing cells with glycosyltransferases, Hart’s laboratory

discovered cytoplasmic and nuclear protein glycosylation by O-linked N-acetylglucosamine

(O-GlcNAc) (e.g., Journal of Biological Chemistry 259: 3308; Journal of Biological Chemistry

261: 8049). Since that time, the Hart laboratory has published nearly 200 papers on

O-GlcNAcylation, identifying and cloning the enzymes controlling cycling, characterizing

O-GlcNAcylation and its interplay with phosphorylation on hundreds of proteins, and they

have developed many of the tools and methods in use today to study this modification. In

1989, Hart founded the leading journal in the field, Glycobiology, serving as Editor-in-Chief until 2001. Hart received the first

International Glycoconjuate Organization (IGO) Award in 1997, the Karl Meyer Award from the Society for Glycobiology in 2006,

and served as the 2009–2011 president of the IGO. Hart is currently an Associate Editor for The Journal of Biological Chemistry

and an Associate Editor for Molecular and Cellular Proteomics. To date, Hart has published about 263 papers, all in the area of

glycosciences. H factor¼84.

Bruno Goud studied biochemistry and immunology at the Ecole Normale Superieure de

Cachan and the University of Paris. He received his PhD in 1981 under the mentorship of

Jean-Claude Antoine and Stratis Avrameas at Institut Pasteur and did postdoctoral work

under the mentorship of Peter Novick at Yale University. In 1995, he established an

independent research group in the Department of Cell Biology at the Institut Curie in Paris.

The main focus of his studies is the regulation of intracellular transport and membrane

trafficking in eukaryotic cells. In particular, his group is working on the functions of Rab

GTPases, the mechanisms that sustain the global organization of intracellular compartments

and the functions of myosins in membrane traffic. Since 2000, he has also developed

original in vitro approaches to unravel physical parameters such as membrane tension or

membrane curvature that underlie transport processes.

Bruno Goud is a recipient of an ERC (European Research Council) Advanced grant

(2013). He is a member of the European Molecular Biology Organization (EMBO). He has

been the Head of the Department of Cell Biology of Institut Curie since 2003.

Grac-a Raposo received her PhD in 1989 in Membrane Biology and Immunology at the

University of Paris VII where she specialized in electron microscopy and membrane biology.

From 1990 to 1995 she was a postdoctoral fellow at the Immunology Center in Marseille

and then in the Department of Cell Biology, Utrecht University, The Netherlands. She is

the deputy Director of the Department of Cell Biology at Institut Curie and Director of the

Training unit. Her major research interests focus on the biogenesis and functions of exo-

somes and lysosome related organelles with implications in neurodegenerative disorders,

lysosomal diseases, and cancer. Her group have started to unravel the cellular and molecular

mechanisms regulating the biogenesis of melanosomes, the lysosome related organelles of

epidermal melanocytes, studies that open a new avenue to modulate pigmentation in health

and disease. In 2012 she was awarded the CNRS Silver Medal and in 2013 the Descartes

Huygens Price from the Royal Dutch Academy of Sciences. She is a member of the European

Molecular Biology Organization (EMBO).
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Alan Ezekowitz, MBChB, DPhil, FAAP, is Co-Founder, President, and CEO of Abide

Therapeutics, a company cofounded by Professors Dale Boger and Ben Cravatt from the

Scripps Research Institute. He was previously Senior Vice President and Franchise Head,

Bone, Respiratory, Immunology, Endocrine, Dermatology and Urology at Merck Research

Laboratories. At Merck, he was responsible for the overall scientific direction of the drug

discovery and development process. Prior to Merck, Dr. Ezekowitz was Chief of Pediatric

Services at the Massachusetts General Hospital for Children and the Partners Healthcare

System and the Charles Wilder Professor of Pediatrics at the Harvard Medical School. He

chaired the committee that led to the establishment of the Academy at the Harvard Medical

School where he served as a Scholar and Founding member. He served on the Board of

Directors of the Partners Healthcare System and Massachusetts General Physicians Organ-

ization. In 2008 he was honored with the establishment R. Alan Ezekowitz Professorship in

Pediatrics at the Harvard Medical School.

He is a member of the American Society of Clinical Investigation, the Association of

American Physicians, the American Pediatric Society, and a Fellow of AAAS. He served on

NIH Subcommittees on Biodefense and Vaccine Adjuvants; NAS panels on antibiotic resistance and academic pharmaceutical

partnerships; and the ARISE 2 task force of American Academy of Arts & Science that is evaluating the impact of federal and

industrial funding of science, engineering, and medicine on American universities.

Dr. Ezekowitz received his MBChB and DPhil from University of Cape Town and Oxford University, respectively. At Children’s

Hospital in Boston, he was a postdoctoral fellow in the Division of Hematology and Oncology with clinical training in pediatrics.

He was on the staff of the Children’s Hospital of Boston prior to moving to the Massachusetts General Hospital.

He is a pioneer in the field of innate immunity and has over 150 publications. In particular his group played a major role in

defining the structure function of the mannose binding lectin and the macrophage mannose receptor.

Douglas A Lauffenburger is Ford Professor of Bioengineering, and cofounder and Head

of the Department of Biological Engineering at MIT, with affiliate appointment in the

Department of Biology; he was a founding codirector of the MIT Computational and Sys-

tems Biology Initiative in 2002. His major research interests are in cell engineering, with

central focus on cell–cell communication and intracellular signal transduction, emphasizing

predictive computational models derived from quantitative experiment. Lauffenburger has

coauthored a monograph entitled Receptors: Models for Binding, Trafficking & Signaling

(Oxford University Press, 1993), has coedited the book entitled Systems Biomedicine: Concepts

and Perspectives (Elsevier, 2010), and has supervised more than 100 doctoral and post-

doctoral students. He is a member of the National Academy of Engineering and the

American Academy of Arts and Sciences, and has served as President of the Biomedical

Engineering Society, Chair of the AIMBE College of Fellows, and on the NIH NIGMS

Advisory Council, and coauthored the NRC report on A New Biology for the 21st Century.
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SECTION EDITORS

Kenneth E Neet received his PhD in Biochemistry in 1965 (with Dr. Frank W. Putnam) from

the University of Florida. He was a postdoctoral fellow at the University of California,

Berkeley (with Dr. Daniel E. Koshland, Jr.), and joined the faculty of Case Western Reserve

University (CWRU) in 1967 as an Assistant Professor of Biochemistry.

Dr. Neet received a Faculty Research Award of the American Cancer Society from 1968 to

1973 and was on sabbatical leave at the National Institute for Medical Research, Mill Hill,

England (with Dr. N. Michael Green) 1973–1974. From 1978 to 1990, he was Professor of

Biochemistry at CWRU. During 1980–1981, he took a sabbatical year as a Josiah Macy Faculty

Scholar in the Department of Neurobiology, Stanford University (with Dr. Eric M. Shooter).

Dr. Neet moved to Rosalind Franklin University of Medicine and Science/The Chicago

Medical School in 1990 and was Professor and Chair of Biochemistry & Molecular Biology

until 2005. Dr. Neet became Associate Dean for Research of the Chicago Medical School,

RFUMS in 2004.

Dr. Neet has served on the Editorial Boards of the Journal of Biological Chemistry, Protein

Science, and Molecular & Cellular Proteomics and as a member of study sections for the

National Institutes of Health and the National Science Foundation. He was an Associate

Editor of the Journal of Biological Chemistry (1996–2013).

Dr. Neet’s research interests have been in the general areas of protein–protein interactions, allosteric interactions, protein

conformational changes, and cell signaling. In his earlier years he studied theoretical and experimental aspects of slow transitions

in enzymes, particularly the cooperativity of the monomeric enzyme glucokinase. Later, he studied ligand–receptor interactions of

nerve growth factor, establishing a mutational system to study the interactions with its receptors (TrkA and p75), and ultimately

the complex signaling emanating from these receptors within neuronal systems.

Sarah A Woodson is a biophysical chemist interested in how RNA molecules fold into

specific three-dimensional structures and how they interact with proteins to turn genes on

and off in the cell. She was born in Michigan, USA, and attended Kalamazoo College before

receiving her PhD in Biophysical Chemistry from Yale University in 1987. After postdoctoral

research in the laboratory of Tom Cech at the University of Colorado Boulder from 1987 to

1990, she joined the faculty of the University of Maryland in 1990 and the faculty of Johns

Hopkins University in 1999, where she is currently the T.C. Jenkins Professor of Biophysics.

Together with Mark Chance and Michael Brenowitz, she pioneered methods for visualizing

how RNA molecules change shape in real time. She served on the board of the RNA Society

and was elected an AAAS Fellow in 2011 and a Pew Scholar in the Biomedical Sciences in

1993. She is currently a reviewing editor of Biopolymers and Journal of Molecular Biology and

serves on the editorial boards of Nucleic Acids Research and RNA.

Judith Bond, Evan Pugh Emeritus Professor of Biochemistry and Molecular Biology at the

Pennsylvania State University College of Medicine, was President of the Federation of

American Societies for Experimental Biology (2012–13) and an Associate Editor of the

Journal of Biological Chemistry (1999–2013). She received her BS degree from Bennington

College in Vermont, her PhD from Rutgers University, and did postdoctoral research at

Vanderbilt University. She rose through the academic ranks at the Medical College of Vir-

ginia, Virginia Commonwealth University, became Professor and Head of Biochemistry and

Nutrition at Virginia Polytechnic Institute and State University, and served at Penn State

University College of Medicine as Professor and Chair of Biochemistry and Molecular

Biology from 1992 to 2012. At Penn State, she also served as assistant dean for graduate

studies, codirector of the All-University Interdisciplinary Biological Sciences Program

and founding director of the Medical Scientist Training Program. She recently directed

NIH-funded summer research programs for high school students and teachers and for

undergraduate students (particularly underrepresented minority groups). Her work on

metalloproteases has been funded continuously by the NIH for over 35 years. She has
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trained 5 Master’s, 21 PhD students, and 19 postdoctoral trainees. Her professional service included member and chair National

Institutes of Health Study Sections, member of the National Institute of Diabetes, Digestive and Kidney Diseases Advisory

Council, member of the American Association of Medical Colleges – Howard Hughes Medical Institute Committee on the

Scientific Foundations for Future Physicians, and President of the American Society for Biochemistry and Molecular Biology.

Elliot Elson received his AB at Harvard, his PhD at Stanford under the mentorship of R.L.

Baldwin and did postdoctoral work at University of California, San Diego, under Bruno

Zimm. His first independent faculty position was in the Department of Chemistry, Cornell

University, where he stayed for 11 years. He then moved to the Department of Biological

Chemistry (now the Department of Biochemistry and Molecular Biophysics) at Washington

University in St. Louis, School of Medicine. He has pursued research in several biophysical

areas. One of these is the development of Fluorescence Correlation Spectroscopy and

Fluorescence Photobleaching Recovery and their application to studies of diffusion in cell

membranes and of phase separation in model membrane bilayers as well as of other cellular

and noncellular phenomena. He has also worked in the areas of cell mechanics, cell mo-

tility, and the mechanical properties of engineered tissues. His laboratory has developed

approaches for measuring mechanical properties of cells in monolayer culture and for

determining the contributions of cells and extracellular matrix to the mechanics of engin-

eered heart and connective tissue constructs.

Tamotsu Yoshimori received his PhD degree in 1989 at Osaka University. After working at

several places including European Molecular Biology Laboratory (Prof. Kai Simons’ lab) and

National Institute of Basic Biology (Prof. Yoshinori Ohsumi’s lab), he is now a distinguished

professor of Osaka University (Graduate School of Medicine and of Frontier Biosciences).

His research interests are focused on intracellular membrane trafficking, and especially for

the last 18 years, on autophagy. He identified LC3 as an autophagosome-binding protein,

which has been widely used as the gold standard in autophagy assays. The paper has been

cited over 3000 times. He also provided new insights into membrane biogenesis in

autophagy and the role of autophagy in pathogen defense and suppression of various

diseases. He authored or coauthored over 220 journal articles and book chapters. He is an

editor of Journal Cell Science, and on the editorial board of Journal of Cell Biology, Molecular

Biology of the Cell, and so on. He is a member of the Faculty of 1000 and a vice president of

Japan Society for Cell Biology. He was awarded Osaka University Presidential Award for

2012 and 2013, Prize for Science and Technology by the Minister of Education, Culture,

Sports, Science and Technology in 2013, Kakiuchi Saburo Memorial Prize by the Japanese

Biochemical Society in 2014, and selected as Highly Cited Researchers 2014 by Thomson

Reuters.

Paul A Gleeson is currently Head of the Department of Biochemistry and Molecular Biology

at the University of Melbourne, located at Bio21 Institute. His research interests include the

molecular mechanisms of intracellular membrane transport and the molecular basis of

organ-specific autoimmune diseases. Paul Gleeson obtained his PhD in 1980 from the

University of Melbourne and did postdoctoral research in the biosynthesis and function of

glycoproteins at the Hospital for Sick Children, Toronto, National Institute for Medical

research, Mill Hill London and Department of Biochemistry, La Trobe University, Mel-

bourne. He established an independent laboratory at Monash University in 1986 where he

defined the targeting signals of Golgi glycosyltransferases, identified golgins of the trans-

Golgi network and along with his colleagues developed mouse models of autoimmune

gastritis. In 2001 he moved to Department of Biochemistry and Molecular Biology at the

University of Melbourne and has been Head of the Department since 2006. He has a

number of international research collaborations and has been a visiting scientist at the

EMBL, Heidelberg, and the Institut Curie, Paris.
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Anna Akhmanova studied biochemistry and molecular biology at the Moscow State Uni-

versity. She received her PhD in 1997 at the University of Nijmegen, the Netherlands. She

worked as a postdoc at the Department of Microbiology and Evolutionary Biology at the

University of Nijmegen and at the Department of Cell Biology at the Erasmus Medical

Center in Rotterdam, the Netherlands. In 2001, she started her own research group at the

Erasmus Medical Center. Since 2011, Anna Akhmanova is professor of Cell Biology at Ut-

recht University, the Netherlands.

Akhmanova studies cytoskeletal organization and trafficking processes, which contribute

to cell polarization, differentiation, vertebrate development, and human disease. The main

focus of her studies is the microtubule cytoskeleton. Her group has described key inter-

actions between proteins associated with microtubule ends and determined their role in the

regulation of microtubule organization and dynamics. She has also characterized mech-

anisms of bidirectional microtubule-based motility of membrane organelles such as cell

nuclei and exocytotic vesicles. Her research relies on combining high-resolution live cell

imaging and quantitative analysis of cytoskeletal remodeling, measurement of protein dy-

namics using advanced microscopic assays, in vitro reconstitution of dynamic cytoskeleton-based processes and different methods

of identification of protein–protein interactions.

Anna Akhmanova is a recipient of the ALW Vernieuwingsimpuls VIDI (2001) and VICI awards (2007) (Netherlands Organ-

ization for Scientific Research), and an ERC Synergy grant (2013). She is the Chair of the board of the Netherlands Microscopy

Society and a member of the European Molecular Biology Organization (EMBO).

Yosef (Yossi) Yarden is a Professor in the Department of Biological Regulation at Weizmann

Institute of Science (Rehovot, Israel). Dr. Yarden obtained his PhD from Weizmann Institute

(under the mentoring of Dr. Joseph Schlessinger) and later trained at both Genentech Inc.,

with Dr. Axel Ullrich, and at the Whitehead Institute (MIT), with Dr. Robert A. Weinberg.

His group studies the roles played by growth factors and their receptors in cancer pro-

gression. They also explore strategies able to intercept growth factor signals in tumors.

Jason D Weber is an Associate Professor in the Departments of Internal Medicine and

Cell Biology and Physiology at Washington University and is the Coleader of the Breast

Cancer Research Program in the Siteman Comprehensive Cancer Center. Dr. Weber obtained

his PhD from Saint Louis University and received postdoctoral training under the mentoring

of Dr. Charles J. Sherr at St. Jude Children’s Research Hospital in Memphis, TN. His group

studies the molecular interplay between oncogenes and tumor suppressors, particularly

focused on their role in regulating cellular growth processes.
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Michael Dustin received his PhD in 1990 in Cell and Developmental Biology from Harvard

University, where he worked in the laboratory of Timothy A. Springer, PhD. During his

graduate work he was involved in the identification and cloning of ICAM-1 and ICAM-2, key

ligands for the integrin LFA-1. He further demonstrated that LFA-1 dependent adhesion was

stimulated by T cell receptor signaling. He did his postdoctoral training with Stuart Kornfeld

at Washington University School of Medicine in St. Louis, focusing on mechanisms of

lysosome biogenesis. He started his independent lab also at Washington University School

of Medicine, and used supported lipid bilayers to define the first protein to modulate

organization of the immunological synapse- CD2 associated protein- and the dynamics of

immunological synapse formation. He moved to NYU School of Medicine in 2001 where he

applied in vivo microscopy to tolerance induction and immune responses in effector sites

including the liver, brain, and spleen. Continued work with the immunological synapse

model resulted in discovery of signaling microclusters, the molecular basis of immuno-

logical synapse stability, and the direct budding of extracellular microvesicle enriched in T

cell receptors in the immunological synapse. Professor Dustin recently took a position at the

University of Oxford with support of a Wellcome Trust Principal Research Fellowship. The focus of his new post is the translation

of the immunological synapse. He received a Presidential Early Career Award in Science and Engineering and the DART–NYU

Biotechnology Achievement Award.

David Sassoon directs a research team at Paris Sorbonne. He received his PhD from

Columbia University (NYC, USA) in 1986 in the biological sciences and was a professor at

Boston University Medical School and Mt. Sinai Medical School before relocating to Paris in

2006. His long-standing interests are in developmental and stem cell biology in a number of

tissues including skeletal muscle, skin, CNS, and heart. Dr. Sassoon recently concluded the

coordination of a EC-funded 15 partner international consortium (Endostem) designed to

identify novel therapeutics for mobilizing endogenous stem/progenitor cells (http://www.

endostem.eu/) and is a recent recipient as coordinator of a multipartner Transatlantic

Network of Excellence grant from the Fondation Leducq focused on cardiac stem cell

biology (http://www.fondationleducq.org/nivel2.aspx?idsec=1360).

A major focus of his research is on adult progenitor/stem cell biology and how these cells

respond to stress. His team has identified a parentally imprinted gene, PW1/Peg3, which is

involved in both p53 and inflammatory responses. PW1 is expressed in adult stem cells in

all tissues identified to date. Loss of PW1 function in stem cells results in a loss of stem cell

competence including a reduced capacity to undergo self-renewal and respond to hypoxic

stress. We are currently evaluating a role for PW1 in postnatal and adult heart with a

particular focus on its role in vessel precursors using both myocardial infarction and stress-

induced myocardial hypertrophy.

Jason M Haugh is a Professor of Chemical and Biomolecular Engineering at North Carolina

State University in Raleigh, NC, USA, where he has been on the faculty since 2000. His

laboratory has been among those to pioneer the synthesis of quantitative experiments and

modeling to study signal transduction in mammalian cells. Since the lab’s inception, their

approach has combined biochemical measurements, live-cell fluorescence microscopy, and

computational modeling to elucidate signaling mechanisms by analyzing their kinetics and

spatial organization in cells. The systems studied by the Haugh Laboratory include: regu-

lation of the phosphoinositide 3-kinase, Ras/extracellular signal-regulated kinase, and

phospholipase C pathways mediated by receptor tyrosine kinases, and cross talk between

these pathways; dynamic organization of multimolecular complexes at cell membranes;

signaling mediated by cytokine and chemokine receptors in immune cells; and integration

of adhesion, signaling, and cytoskeletal dynamics that direct cell migration.
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After graduating with an MA in Mathematics from the University of Cambridge, Helen Mary

Byrne received her Master of Science and DPhil from the University of Oxford. She worked

as a postdoctoral researcher at the Universities of Oxford and Bath, before taking up a

lectureship at the UMIST in Manchester. She moved to the University of Nottingham in

1998 and was awarded a prestigious Advanced Research Fellowship from the United

Kingdom’s Engineering and Physical Sciences Research Council (2000–2006). She was

promoted to Reader in 2002 and Professor in 2003. While in Nottingham, she established

and then led the Centre for Mathematical Medicine and Biology until she returned to

Oxford in 2011 where she is now based in the Mathematical Institute at the University of

Oxford. She has over 20 years’ experience of developing, analyzing, and simulating con-

tinuum and multiscale models of biomedical systems, and a particular interest in studying

the growth and response to treatment of solid tumors.

Rune Linding completed his PhD at the European Molecular Biology Laboratory (EMBL) in

Heidelberg, Germany, followed by postdoctoral training at EMBL. He then jointly trained

with professors Tony Pawson and Mike Yaffe at the Lunenfeld at Mount Sinai Hospital in

Toronto, Canada, and the Massachusetts Institute of Technology (MIT) in Cambridge, US,

respectively. Dr. Linding then established his own laboratory of Cellular and Molecular

Logic at the Institute of Cancer Research (ICR) in London, UK, before returning to Denmark

to take a position as professor of cellular signal integration at the Technical University of

Denmark. In 2014, Dr. Linding moved his laboratory to the Biotech Research and Innov-

ation Centre (BRIC) at University of Copenhagen where he is currently professor of cellular

signaling. His research group focuses on big data network biology, exploring biological

systems by developing and deploying algorithms aimed to predict cell behavior, in particular

looking at cellular signal processing and decision making. A strategic focus is to continue to

develop computational tools (such as KinomeXplorer, NetworKIN, and NetPhorest) and to

deploy these on genome-scale quantitative data obtained by, for example, mass spec-

trometry, genomic, and phenotypic screens to understand the principles of how spatio and

temporal assembly of mammalian signaling networks transmit and process information at a

systems level in order to alter cell behavior. His overarching aim is to advance network

medicine by identifying and targeting signaling networks associated with complex diseases. To this end Dr. Linding is currently

leading high-level, strategic, multidisciplinary studies of signaling network dynamics driving cancer metastasis in collaboration

with other labs at Harvard, Yale, The Jackson Laboratory, Memorial Sloan Kettering Cancer Center, MIT, and BRIC.
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Jozěf Stefan Institute, Ljubljana, Slovenia and Centre of
Excellence for Integrated Approaches in Chemistry and
Biology of Proteins, Ljubljana, Slovenia

AJ Turner
University of Leeds, Leeds, UK

B Tu-Sekine
Johns Hopkins School of Medicine, Baltimore, MD,
USA

B Van Houten
University of Pittsburgh, Pittsburgh, PA, USA

MN Vu
Georgia Institute of Technology, Atlanta, GA, USA

KW Walker
Amgen Inc., Thousand Oaks, CA, USA

PH Weigel
University of Oklahoma Health Sciences Center,
Oklahoma City, OK, USA

LC Wijeyewickrema
Monash University, Clayton, VIC, Australia

A Wlodawer
National Cancer Institute, Frederick, MD, USA

MS Wolfe
Harvard Medical School, Boston, MA, USA

MJ Wolfgang
Johns Hopkins University School of Medicine, Baltimore,
MD, USA

SA Woodson
Johns Hopkins University School of Medicine, Baltimore,
MD, USA

K Yamamoto
Kyushu University, Fukuoka, Japan

NY Yao
The Rockefeller University, New York, NY, USA

LF Zacchi
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ETH Zürich, Zürich, Switzerland

xx Contributors to Volume 1



CONTENTS OF VOLUME 1

Preface xxv

Cell Biology: An Overview RA Bradshaw and PD Stahl xxvii

Molecular Cell Biology

Molecular Cell Biology: An Overview KE Neet, SA Woodson, JS Bond, and GW Hart 1

Molecular Principles, Components, Technology, and Concepts

Basic Principles

Chemical and Physical Principles H Oubrahim and P Boon Chock 5

Biocatalysis PA Frey and GH Reed 14

Nucleic Acids

DNA, RNA Chemical Properties (Including Sequencing and Next-Generation
Sequencing) M Datto and RL Lundblad 24

The Chemical Synthesis of DNA and RNA Oligonucleotides for Drug Development and Synthetic
Biology Applications SL Beaucage and HV Jain 36

Proteins

Expression Systems DI Fisher, LM Mayr, and RG Roth 54

Isolation/Purification of Proteins GA Grant 66

Protein Sequence Determination: Methodology and Evolutionary Implications RA Bradshaw 75

Posttranslational Modifications: Key Players in Health and Disease I Lindberg and JR Peinado 84

Protein Domains: Structure, Function, and Methods DA Korasick and JM Jez 91

NMR in Structural and Cell Biology G Marius Clore 98

Folding, Misfolding, Disordered Proteins, and Related Diseases LM Longo and M Blaber 108

Diseases of Protein Folding: Huntington’s Disease and Amyotrophic Lateral Sclerosis BJ Bailus
and LM Ellerby 115

Site-Directed Mutagenesis KW Walker 122

Chemical Biology RL Lundblad 128

Drug Design RL Lundblad 135

Antibodies and Improved Engineered Formats (as Reagents) PJ Hudson 141

Lipids

Lipidomics BM Kenwood and AH Merrill Jr. 147

Synthesis and Structure of Glycerolipids W Dowhan 160

Cholesterol and Other Steroids S Sitaula and TP Burris 173

xxi



Glycolipids AH Merrill Jr. and MN Vu 180

Lipid Signaling B Tu-Sekine and DM Raben 194

Membranes

Composition, Physical Properties, and Curvature B Antonny 201

Lipid Rafts/Membrane Rafts E London 208

Membrane Potential: Concepts AJ Moorhouse 218

The Outer Mitochondrial Membrane, a Smooth ‘Coat’ with Many Holes and Many Roles:
Preparation, Protein Components, Interactions with Other Membranes, Involvement in Health,
Disease, and as a Drug Target PL Pedersen and YH Ko 237

Neuronal Action Potentials and Ion Channel Allostery SE Kotermanski and M Cascio 244

Cystic Fibrosis NA Bradbury 252

Carbohydrates

Glycogen and Starch PJ Roach and SC Zeeman 263

Proteoglycans PW Park, K Hayashida, RS Aquino, and A Jinno 271

Hyaluronan VC Hascall, PH Weigel, and BP Toole 279

Metabolism

Metabolic Regulation MS Patel and RA Harris 288

A Structure Perspective on Organelle Bioenergetics WA Cramer and SK Singh 298

Nucleic Acid Synthesis/Breakdown

RNA Synthesis/Function

Transfer RNA J Doherty and M Guo 309

Messenger RNA (mRNA): The Link between DNA and Protein DJ Goss and AV Domashevskiy 341

The Interplay between Eukaryotic mRNA Degradation and Translation W Hu 346

miRNAs/Small Noncoding RNAs R Fukunaga 354

Small RNAs/Cancer BM Ryan 364

Riboswitches and Ribozymes MWL Lau and AR Ferré-D’Amaré 375

Ribosomal RNAs and Protein Synthesis S Joseph 384

Comparison of Bacterial and Eukaryotic Replisome Components NY Yao and ME O’Donnell 396

DNA Synthesis/Repair

Telomeres and Telomerase JJ-L Chen and JD Podlevsky 418

Telomere Biology DC Teasley and SA Stewart 426

Eukaryotic Nucleotide Excision Repair B Van Houten and M Kong 435

The Base Excision Repair Pathway JL Parsons and MJ Edmonds 442

xxii Contents of Volume 1



Nonhomologous DNA End Joining S Sharma and SC Raghavan 451

DNA Repair by Homologous Recombination SS Jenkins, S Mukherjee, and W-D Heyer 456

Transcription

Prokaryotic Transcription DM Hinton 468

Eukaryotic Transcriptional Regulation BA Lewis 481

Distant Activation of Transcription by Enhancers O Kulaeva and VM Studitsky 488

The Spliceosome and Pre-mRNA Splicing TJ Carrocci and AA Hoskins 495

Pre-mRNA Splicing: Function and Dysfunction AM Case, IA Sawyer, M Dundr, and ML Hastings 503

Nucleic Acid Technology

Transgenesis and Gene Replacement MJ Wolfgang 512

Viral Nucleic Acids IP O’Carroll and A Rein 517

Protein Synthesis/Degradation

Translation

Components, Initiation, Elongation, Termination, and Regulation AA Komar and WC Merrick 525

Biogenesis of Secretory Proteins Z Chang 535

The Protein Biosynthetic Machinery of Mitochondria LL Spremulli 545

Regulated Proteolysis of Signaling Molecules: The Proprotein Convertases B Ramos-Molina,
I Lindberg, and JR Peinado 555

Protein Degradation – General

Mass Spectrometry-based Methodologies for Studying Proteolytic Networks and the
Degradome N Solis and CM Overall 568

Protein Degradation – Intracellular

Ubiquitin, Ubiquitin-Like Proteins, and Proteasome-Mediated Degradation RJ Dohmen,
JM Huibregtse, and M Scheffner 582

Endoplasmic Reticulum-Associated Degradation and Protein Quality Control LF Zacchi,
JJ Caramelo, AA McCracken, and JL Brodsky 596

Role of Lysosomes in Intracellular Degradation M Hafner Česen, V Stoka, and B Turk 612
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PREFACE

Cell biology is the study of cells, the integral unit that is the
basis of all living tissues. In its earliest phases, this area of
investigation was largely defined by microscopic-based ob-
servations of structure and organization that were, by their
nature, largely descriptive. This also served to delineate cell
biology from its nearest neighbor, biochemistry, which, dating
from its post WWII renaissance, was driven in large part by
reductionist approaches, where tissues, cells, and organelles
were broken down in order to isolate and then characterize
individual components. The melding force that bridged these
two areas was molecular biology that allowed the cell biologist
to transform pictures into functions and allowed the bio-
chemist to reassemble their components into ensembles and
subcellular entities. Not surprisingly the boundary between
these two key biological sciences has become blurred beyond
recognition. Today a considerable part of what passes as cell
biology is by any other name biochemistry (or molecular
biology – the distinction between these two areas being
equally indistinct) and vice versa. Indeed, one of the first
challenges we faced in organizing this Encyclopedia was how
much molecular detail to include. It was our conclusion that
for the sake of completeness, and to appropriately introduce
the volumes Organizational Cell Biology and Functional Cell
Biology, we needed a description of the molecular com-
ponents of the cell, particularly with respect to the synthesis
and degradation of proteins and nucleic acids, along with
outlines of important chemical principles and key method-
ology. We were guided to some degree in these decisions by
input from undergraduate and graduate teachers and the
contents of their introductory courses that they shared with us
and by discussions with our volume and section editors.
The result was the first volume which we recognize is very
‘biochemical,’ but certainly lacking the more detailed coverage
of the Encyclopedia of Biological Chemistry (Lennarz and Lane,
2004) or the many excellent biochemical texts that dot the
educational landscape. Readers who find ‘gaps’ or incomplete
treatments in this section will likely be able to find the add-
itional detail they seek from these sources.

The second major decision that we had to confront was
whether we would attempt to cover the full range of living
organisms or whether we would place some limits on the
scope of the material we included. In the final result, it was
decided to place the emphasis on higher eukaryotes with only
very prescribed treatments of lower eukaryotes and pro-
karyotes. Volumes 2 and 3 thus deal with material that has
perhaps been more traditionally thought of as cell biology.
Again we were guided in our decisions about what to include
by teaching considerations, brainstorming sessions with our
editors, and a perceived need to separate cellular organization
from cellular function. However, as even a quick perusal will
reveal, this is not a sharp delineation either. Volume 2 begins
with a methodological treatment of imaging, which is basically
divided between light and electron microscopic applications,
and is followed by sections on organelles, interorganellar
communication, and the cytoskeleton (including motors). The

last part of volume 2 is devoted to intracellular infection and
covers a variety of external agents and pathogens that impact
cell function as well as human pathology. Volume 3, in con-
trast, largely deals with major cell functions: signaling, cell-
cycle control, and apoptosis. The last two parts are devoted
to cells of the immune system and their responses and stem
cells – two highly specialized niches characterized by unique
cellular involvement.

The last part of the Encyclopedia deals with systems
biology. This is really the newest area of cell biology and
considers cellular involvement as part of a phenotypic
response. As such, it strives to integrate all of the levels of
the first three volumes in a consistent manner to produce
a seamless description of cellular function. This is clearly a
newly evolving area and the most rapidly changing part of cell
biology; indeed it is where we expect to see the greatest change
in the next few years.

Assembling a treatment of a topic as large as cell biology
had multiple challenges. Coverage was a significant problem:
on the one hand it was almost impossible to avoid some re-
dundancy in places while, on the other, there were inevitable
gaps. Some of these arose from late cancellations; others from
oversights on our part. We can only promise to fill these in
future editions. We also note that as can be expected for a large
multiauthor compilation the individual articles do differ in
detail and treatment. We felt it was more important to allow
our experts substantial latitude in deciding how to present
their topics than to apply rigid guidelines. We did try to limit
the number of references (to make it easier for people not
familiar with a topic to make the transition to more extensive
articles) but there is admittedly some considerable variation in
the bibliographic material as well.

When we were well into the project, we were approached
by Graham Nisbet (Elsevier) about including the Encyclopedia
in a larger collection entitled the Reference Module in Bio-
medical Sciences. The Reference Module plan was grouped in
single integrated work information from several other com-
pendia and it was our view that this would greatly leverage the
value of our efforts (and those of our contributors). While we
were the ‘new kid on the block’ in that we were still compiling
the Encyclopedia and the other collections to be included were
already extant, we felt that it was too good an opportunity to
pass up. The Reference Module has since been launched and
although it does not yet contain the complete content from the
Encyclopedia, this will be achieved in the not too distant fu-
ture. We consider that this will be a particularly valuable re-
source for researchers that are just entering (or changing into)
this field.

No work of this size could be completed without the help
and advice of many people. In this regard we would like to
thank a number of people who were instrumental in bringing
this project to fruition. First and foremost we would like
to recognize our volume editors: Jerry Hart, Graça Raposo,
Bruno Goud, Alan Ezekowitz, and Doug Lauffenburger; and
our section editors: Ken Neet, Sarah Woodson, Judy Bond,
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Elliot Elson, Tamotsu Yoshimori, Paul Gleeson, Anna Akh-
manova, Yosef Yarden, Jason Weber, Michael Dustin, David
Sassoon, Jason Haugh, Helen Byrne, and Rune Linding; and
thank them for their invaluable input, enthusiasm, and hard
work. They are truly a global group and have been a great team
to work with. We also wish to thank the staff at Elsevier in-
cluding Janice Audet, Peter Labella, Nicky Carter, Karen Mal-
oney, Erin Hill-Parks, Rashmi Phadnis, Blerina Osmanaj, and
Ginny Mills for their many efforts, perseverance (particularly
with our idiosyncrasies), and skillful management of every
aspect of this project.

In the course of planning this work, we gathered infor-
mation from a number of sources. At the outset the publishers
polled some 167 faculty from both undergraduate and
graduate schools to ascertain their perceived interest in such
a project, which also garnered considerable input about
potential topics. The response was highly favorable. We
also talked with many colleagues about experiences at their
institutions and would like to particularly thank Catherine
Bevier (Colby College), Robert Simoni (Stanford University),
Larry Marsh (UC Irvine), and John Cooper (Washington
University) for providing syllabi of germane courses taught in
their institutions. Special thanks also go to Ruedi Abersold
(ETH, Zurich) and Sergio Grinstein (University of Toronto) for
their expertise that they readily shared with us, which was
invaluable in planning certain sections.

Finally we would like to recognize all of our authors. We
have been extraordinarily fortunate in attracting individuals
from all around the globe to take time from their busy
schedules to prepare this splendid set of contributions. With-
out these efforts there would be no Encyclopedia. Under or-
dinary circumstances it would be appropriate to dedicate the
work to them and all the colleagues whose works they wrote
about. However, during the preparation of this work, we sadly
lost one of the most important contributors to cell biology,
Tony Pawson. Tony was a true pioneer in elucidating basic
mechanisms of how cells transmit information intracellularly,
a fundamental knowledge that permeates all of cell biology. In
an effort that was initiated by one of the section editors, Rune
Linding, it was decided to dedicate the entire work to his
memory as recognition of his contributions and a lasting tri-
bute to a man who left us too soon.

We hope that the Encyclopedia will be of value to students
and researchers alike and will become a useful tool in the
training of future generations of scientists.

Ralph A Bradshaw and Philip D Stahl
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All living organisms can be divided into three principal cat-
egories: archaebacteria, eubacteria, and eukaryotes; although
they differ in structure and organization, they are all composed
of cells as the fundamental life unit. At the molecular level,
there is also a great deal of similarity in the basic materials that
make up these entities because they use the same kinds of
molecules to store and reproduce information, to run the cel-
lular metabolism and machinery and to provide the structural
framework. Thus nucleic acids, proteins, lipid membranes, and
carbohydrates – alone and in various combinations – are uni-
versally present, albeit in distinguishable forms, along with
innumerable metabolites and ions. There are components that
are apparently essential for life and are found in one form or
another in all species and there are many unique moieties and
associated activities that are highly specialized and are found in
relatively few organisms. Indeed, the similarities have under-
pinned the development of our understanding of cellular
function at a rudimentary level and the differences, basically
engendered by evolution, have illustrated and delineated the
complexity that speciation has introduced. Perhaps the largest
of these differences is that which separates single cell organisms
from multicellular organisms. The latter are exclusively eu-
karyotes while the former are composed of both eukaryotes and
prokaryotes. The cellular organization and architecture that
distinguishes these two major life forms is striking; although
cell biology correctly embraces both, traditionally prokaryotic
organisms have been the province of the microbiologists and
the majority of cell biology research has been devoted to the
eukaryotic world. In practical terms this translates for the most
part into the study of human cells and those of easily main-
tained laboratory animals and selected paradigms, for example,
fruit flies, worms, and zebra fish.

Human and animal cell biology is not a tightly proscribed
science with well-defined borders. Basically it serves at the
interface between biochemistry, molecular biology, and gen-
etics, on the one hand, and anatomy and physiology, on the
other. The continuum of these disciplines forms the core of the
biomedical sciences, which also include the related but sep-
arate fields of pharmacology, microbiology, immunology, and
pathology that provide the connections to disease and health.
Cell biology has strong connections to all of these. There are
also specialized areas, for example, neuroscience, that are of
such importance that they warrant their own category and the
cell biology associated with them is also highly specialized.
Thus, cell biology is as complex as the enormous variety of
cells that exist and achieving an accurate description of all of
them in terms of their components and functions has long
been a major part of the research in this field.

Imaging and Organelle Organization

Among the developments that propelled cell biology into the
modern era are the introduction of the ultracentrifuge and

the rapid advances in microscopy both electron and light
microscopy – the former allowing investigators to fractionate
and characterize the components of the cell and the latter to
literally see them – either in situ or in isolated form. This
progress is illustrated by a series of Nobel Prizes starting in the
early 1970s that chronicle the grand confluence of classical
biochemistry and general physiology that created modern
cell biology (Claude et al., 1974) or the discovery and char-
acterization of intracellular organelles – lysosomes and
endoplasmic reticulum (ER) among others (Mitchell, 1978),
for the chemisomotic hypothesis (Brown and Goldstein,
1985), for endocytosis (Ciechanover et al., 2004), for ubiqui-
tination and protein degradation, and just recently (Rothman
et al., 2013), for vesicle trafficking, and (Betzig et al., 2014) for
advances in light microscopy. The early cell biologists insisted
on quantitative application of these new techniques and laid
the groundwork for modern cell biology. As with bio-
chemistry, reductionism has been the keystone for the amaz-
ing success over these past several decades. Each organelle has
its own research history – the nucleus, mitochondria, peroxi-
somes, the proteasome, the ER, and cytoskeleton. The Golgi
apparatus/secretory pathway and the endosome–lysosome
network have all been examined in detail both in isolation and
in their relationships with each other. A new member, the
exosome (aka extracellular vesicle) has emerged more recently
and stimulated the imagination of aspiring young investi-
gators (Harding et al., 2013). The rise of genomics, the de-
velopment of spectacular imaging modalities, and evolving
biochemical techniques (proteomics) have led to the discovery
of molecular motors, the identification of macromolecular
complexes such as the exocyst, ESCRT, GARP, SNARES among
others that choreograph complex intracellular pathways, in-
cluding cell motility and cytokinesis, have brought cell biology
into this new era where the whole is now seen as larger than
the individual components. This creates the segue from Parts 1
and 2 of the Encyclopedia (Molecular Cell Biology and Organ-
izational Cell Biology) to Part 3 (Functional Cell Biology) where
signaling modalities will be seen as an integrative force for
regulation and control.

Signaling

While all organisms can sense their environment and respond
to cues from it, multicellular organisms must in addition co-
ordinate their responses, which require intercellular com-
munication at a sophisticated level (Bradshaw and Dennis,
2009). The higher the development, the more complex these
communication systems become. Thus the cell biologist must
focus not only on how molecular function is translated into
cell organization and how these functions are coordinated
from organelle to organelle but also on the external inter-
actions and signals that control the larger functional responses
of organs and ultimately organisms.
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Intercellular communication is afforded by stimuli that can
be transmitted across the cell membrane, either directly or via
membrane bound molecules that in turn pass signals to the
intracellular compartment. The origins of these stimuli may be
quite diverse. Among other things, they can include cell–cell
contacts, soluble factors/messengers, or foreign agents. Lipo-
philic molecules can cross the membrane by diffusion or by
facilitated transport to recognize and bind to intracellular en-
tities but most substances bind to membrane bound proteins
and induce their signal by ‘activating’ them instead. These so-
called receptors are capable of producing a variety of responses
that invariably involve the generation of posttranslational
modifications of preexisting proteins. Protein phosphorylation,
which in eukaryotes mostly occurs on tyrosine, serine, and
threonine residues, is highly prevalent and appears to be directly
or indirectly involved in almost all transmembrane signaling
(Gnad et al., 2011). However, it is by no means the only vehicle
for transmitting information as acetylation, methylation, mono-
glycosylation, and ubiquitination, to name a few, are both
important and widespread. There are over three hundred dif-
ferent covalent modifications (Khoury et al., 2011) that are
introduced into proteins (and many more that have not yet
been chemically defined) of both a transient and stable nature
and most are likely to be involved to some extent in signal
transduction processes. In addition, limited proteolysis can also
be an important part of a pathway and this activity is a major
player in cellular responses (Turk et al., 2012).

The induction of an intracellular signal is basically per-
petrated by the formation of new interactions between the
modified proteins and other entities, which can range from
small molecules to macromolecular protein complexes. One
of the most important advances in understanding how cells
process information induced from external stimuli was the
appreciation that the newly formed sites produced by the
protein modifications were recognized by other proteins with
modules specifically designed for this purpose (Pawson,
1995). Thus, for example, phosphotyrosine residues could be
recognized by other proteins containing a domain, termed
SH2 for its relatedness to a similar domain found in the Src
protein kinase, which could then be further modified allowing
for additional interactions to occur. By these ‘docking’ events,
signaling complexes could be assembled, often in multiple
steps, that ultimately lead to the activation of key effectors.
The end point of many of the pathways is the activation
of transcription factors that lead to the modulation of
gene expression of that cell by ultimately changing its
protein expression profile (Bradshaw and Dennis, 2009).
However, many molecules are usually modified and activated
‘along the way’ and these ‘new’ activities also add to the overall
response to the original stimuli. Short term responses indeed
require that the protein effectors necessary for it are already
present; long term responses per force require new protein
synthesis.

Signal transduction is thus dependent on two phenomena:
posttranslational modifications, particularly of the readily re-
versible type, and protein–protein interactions. The extent to
which these two activities take place, even in resting, un-
stimulated cells was greatly underestimated before the advent
of proteomics and the introduction of mass spectrometric
methodology into cell biological research (Bradshaw and

Burlingame, 2005) These high-throughput unbiased analyses
of very complex mixtures, basically derived directly from cell
lysates, revealed that essentially every protein had multiple
interacting partners and that posttranslational modifications
affected a very significant proportion of the proteins present.
These were profound differences from what had been the
prevailing wisdom and amounted to a paradigm shift in
thinking about cellular organization and structure. As noted
above, these same tools have gone on to cast new light on
organelle organization in terms of resident proteins and have
helped to disclose the structure of important cellular
machines, such as the proteasome (Voges et al., 1999), the
nuclear pore (Routa et al., 2000), and transcription complexes
(Kornberg, 2007). They have also begun to elucidate the
complexity of epigenetic regulation of gene transcription at the
histone level (Cosgrove, 2012), which will also be essential in
completing our understanding of signaling processes.

Concluding Remarks

Two of the most fundamental aspects of cells are their ability
to reproduce themselves and, in higher organisms, to undergo
changes that lead to new cell types and functions. These de-
velopmental processes leading to differentiation are what
allow a single fertilized egg to form a complex adult organism
and require the synthesis of all aspects of cell biology to
understand. Knowing how cells go from one state to another
in a timed and regulated fashion forms the core of develop-
mental biology, which can be viewed as a sub discipline of cell
biology. Also of major importance is the maintenance of via-
bility and the associated turnover processes. The control of cell
death is not only an essential part of development it is also key
to managing situations that have gone awry and underlies
many serious disease conditions.

It is clear that science is still a long way from understanding
how even simple cells work. There is a long list of functions
and structures that remain to be elucidated and integrating the
various experimental approaches and the data they produce
still lags far behind. This is the ‘Era of Big Data’ and vast
amounts of new information that impact on our under-
standing of cells and their processes are collected every day.
Genomic information is a good example – despite the rapidity
that this sort of information can now be obtained, it still re-
mains to be effectively mined in terms of what it can tell us
about basic principles of how cells work. There has been an
understandable pressure to apply this information to man-
aging disease (Collins and Varmus, 2015), particularly those
that are life threatening, but there certainly is information that
is yet to be formulated that would apply to fundamental
problems as well. The same can be said for transcriptomics,
proteomics, and metabolomics. In addition to these powerful
new technologies, singular advances in analyzing single cells
promises to augment these molecular approaches significantly
(Di Palma and Bodenmiller, 2015).

One aspect of cell biology that is looking to address the
challenges of integrating these relatively newly minted studies
is systems biology (Part 4). It is far too early to assess the value
of these efforts in coordinating this flood of information but it
certainly looks promising. It will be an elusive goal for some
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time to come but also a stimulus for new generations of cell
biologists that will be forthcoming.

References

Betzig, E., Hell, S.W., Moerner, W.E., 2014. The Nobel Prize in chemistry − Press
release. Nobelprize.org. Nobel Media AB 2014. Available at: http://www.
nobelprize.org/nobel_prizes/chemistry/laureates/2014/press.html (accessed
03.04.15).

Bradshaw, R.A., Burlingame, A.L., 2005. From proteins to proteomics. IUBMB Life
57, 267–272.

Bradshaw, R.A., Dennis, E.A. (Eds.), 2009. Handbook of Cell Signaling, second ed.,
vol. 1−3. San Diego, CA: Elsevier Academic Press, pp. 1−3047.

Brown, M.S., Goldstein, J.L., 1985. Physiology or medicine − Press release.
Nobelprize.org. Nobel Media AB 2014. Available at: http://www.nobelprize.org/
nobel_prizes/medicine/laureates/1985/press.html (accessed 03.04.15).

Ciechanover, A., Hershko, A., Rose, I., 2004. The Nobel Prize in chemistry − Press
release. Nobelprize.org. Nobel Media AB 2014. Available at: http://www.
nobelprize.org/nobel_prizes/chemistry/laureates/2004/press.html (accessed
03.04.15).

Claude, A., de Duve, C., Palade, G.E.,1974. Physiology or medicine − Press
release. Nobelprize.org. Nobel Media AB 2014. Available at: http://www.
nobelprize.org/nobel_prizes/medicine/laureates/1974/press.html (accessed
03.04.15).

Collins, F.S., Varmus, H.A., 2015. New initiative on precision medicine. New
England Journal of Medicine 372, 793–795.

Cosgrove, M.S., 2012. Writers and readers: Deconvoluting the harmonic complexity
of the histone code. Nature Structural & Molecular Biology 19, 739–740.

Di Palma, S., Bodenmiller, B., 2015. Unraveling cell populations in tumors by
single-cell mass cytometry. Current Opinion in Biotechnology 31, 122–129.

Gnad, F., Gunawardena, J., Mann, M., 2011. PHOSIDA 2011: The posttranslational
modification database. Nucleic Acids Research 39 (suppl. 1), D253–D260.

Harding, C.V., Heuser, J.E., Stahl, P., 2013. Exosomes: Looking back three decades
and into the future. Journal of Cell Biology 200, 367–371.

Khoury, G.A., Baliban, R.C., Floudas, C.A., 2011. Proteome-wide post-translational
modification statistics: Frequency analysis and curation of the swiss-prot
database. Scientific Reports 1, 90. doi:10.1038/srep00090.

Kornberg, R.D., 2007. The molecular basis of eukaryotic transcription. Proceedings
of the National Academy of Sciences of the United States of America 104,
12955–12961.

Mitchell, P., 1978. The Nobel Prize in chemistry − Press release. Nobelprize.org.
Nobel Media AB 2014. Available at: http://www.nobelprize.org/nobel_prizes/
chemistry/laureates/1978/press.html (accessed 03.04.15).

Pawson, T., 1995. Protein modules and signaling networks. Nature 373, 573–580.
Rothman, J.E., Schekman, R.W., Südhof, T.C., 2013. The 2013 Nobel Prize in

physiology or medicine − Press release. Nobelprize.org. Nobel Media AB 2014.
Available at: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/
press.html (accessed 03.04.15).

Routa, M.P., Aitchisonb, J.D., Supratoa, A., et al., 2000. The yeast nuclear pore
complex − Composition, architecture, and transport mechanism. Journal of Cell
Biology 148, 635–652.

Turk, B., Turk, D., Turk, V., 2012. Protease signalling: The cutting edge. EMBO
Journal 31, 1630–1643.

Voges, D., Zwickl, P., Baumeister, W., 1999. The 26S proteasome: A molecular
machine designed for controlled proteolysis. Annual Review of Biochemistry 68,
1015–1068.

Cell Biology: An Overview xxix





Molecular Cell Biology: An Overview
KE Neet, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
SA Woodson, Johns Hopkins University School of Medicine, Baltimore, MD, USA
JS Bond, Penn State University College of Medicine, Hershey, PA, USA
GW Hart, Johns Hopkins University School of Medicine, Baltimore, MD, USA

r 2016 Elsevier Inc. All rights reserved.

Basic Molecular Components and Technology

The history of cell biology is rooted in the related sciences of
biochemistry and molecular biology. Biochemistry grew from
physiology and chemistry early in the twentieth century and
gave fruit to molecular biology in mid-century. The term ‘cell
biology’ first appeared in PubMed in 1917, occurred sparsely
for many years, crossed the 10 paper per year mark in 1948,
did not reach 1000 papers per year until the mid-1980s, and
currently appears in more than 25 000 papers per year. The
driving force of this explosion of information is the inherent
interest in biological systems, i.e., ourselves, as wellas the
intrinsic importance to medicine, i.e., ourselves in a patho-
logical state.

As these sciences moved into the twentieth century, the
dividing lines among these disciplines became blurred so that
an Encyclopedia of Cell Biologymust begin with a presentation of
the essentials of biochemistry and molecular biology that are
needed to understand cell biology. Currently, these disciplines
are nearly indistinguishable with a considerable overlapping
continuum. Good investigators follow significant research
questions regardless of what discipline is involved in the so-
lutions. Biology follows a continuum from atom to molecule
to system to organism. Advances in these related scientific
areas could not have been made without parallel development
of experimental techniques capable of asking and answering
the appropriate questions. This first subsection Basic Mo-
lecular Components and Technology leads to the remainder
of the first major section of the Encyclopedia, Molecular
Aspects/Molecular Principles, Components, Technology,
and Concepts Important for Understanding Cell Biology and
deals with evolving techniques that have helped elucidate
the nature of the molecules, complexes, organelles, cells, and
interactions involved in living organisms. The emphasis is not
on the techniques themselves, but rather on what the tech-
nology reveals about the basic components of biological cells
and systems.

The early ‘central dogma’ of ‘DNA makes RNA makes
protein’ has become outdated since the discovery of reverse
transcription in certain RNA viruses and the discovery of
catalytic RNA. The concept of one gene for one protein had to
be expanded and modified due both to splicing and post-
translational modifications. The terminology of noncoding
DNA as ‘junk’ DNA has been made passé by microRNA and
other types of noncoding RNA. Thus, the field of biochemistry/
molecular biology/cell biology, like with all science, advances.
Indeed, as the evolution of the understanding of cell biology
has progressed, we have found broader concepts to replace

simpler ones resulting in an ever-increasing appreciation
of the complexity of structure, function, regulation, and
growth of living organisms. Many of these principles and
molecules fundamental to cell biology have also been treated
from a somewhat different perspective and format in the
related Elsevier publication ‘Encyclopedia of Biological Chemistry,’
second edition, and should be consulted for additional
information.

Since life is based on chemistry, the Encyclopedia of Cell
Biology starts with certain chemical principles of equilibria,
bonding, and catalysis before moving into structural con-
siderations. The biological structures discussed are the four
usual major classes of biomolecules: nucleic acids, proteins,
lipids, and carbohydrates. More complex molecules/systems
encompass more than one of these groups, for example,
glycoproteins glycolipids, lipoproteins, and membranes. Sev-
eral articles are devoted to metabolites and metabolism
(‘classical’ biochemistry and essential for functioning of cells).
Certain diseases that are linked to molecular function or dys-
function, for example, cystic fibrosis (see Cystic Fibrosis) and
Huntington’s disease (see Diseases of Protein Folding: Hun-
tington’s Disease and Amyotrophic Lateral Sclerosis), are spe-
cifically presented.

Topics making up the first section, in order, are basic
chemical principles (including equilibria) (see Chemical and
Physical Principles), bonding (see Chemical Biology), and
catalysis (see Biocatalysis); nucleic acids (including chemical
properties and sequencing) (see DNA, RNA Chemical Prop-
erties (Including Sequencing and Next-Generation Se-
quencing)), chemical synthesis (see The Chemical Synthesis of
DNA and RNA Oligonucleotides for Drug Development and
Synthetic Biology Applications), cloning and expression sys-
tems (see Expression Systems) and site-directed mutagenesis
(see Site-Directed Mutagenesis); Proteins (including structure
and domains) (see Protein Domains: Structure, Function, and
Methods), folding and misfolding (see Folding, Misfolding,
Disordered Proteins, and Related Diseases; Diseases of Protein
Folding: Huntington’s Disease and Amyotrophic Lateral
Sclerosis), posttranslational modifications (see Posttransla-
tional Modifications: Key Players in Health and Disease), drug
design (see Drug Design), antibodies (see Antibodies and
Improved Engineered Formats (as Reagents)), sequencing
(see Protein Sequence Determination: Methodology and Evo-
lutionary Implications), purification (see Isolation/Purification
of Proteins) and spectroscopy (see NMR in Structural and Cell
Biology); Lipids (including cholesterol) (see Cholesterol and
Other Steroids), complex lipids (see Synthesis and Structure of
Glycerolipids; Glycolipids), signaling (see Lipid Signaling) and
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lipidomics (see Lipidomics); Membranes (including properties
and biogenesis) (see Composition, Physical Properties, and
Curvature), rafts (see Lipid Rafts/Membrane Rafts), electro-
chemical potential (see Membrane Potential: Concepts),
nerves (see Neuronal Action Potentials and Ion Channel
Allostery) and mitochondria (see The Outer Mitochondrial
Membrane, a Smooth ‘Coat’ with Many Holes and Many
Roles: Preparation, Protein Components, Interactions with
Other Membranes, Involvement in Health, Disease, and as
a Drug Target); Complex carbohydrates (including glycogen)
(see Glycogen and Starch), proteoglycans (see Proteoglycans)
and hyaluronan (see Hyaluronan); and Metabolites (in-
cluding regulation) (see Metabolic Regulation), bioenergetics
and organelles (see A Structure Perspective on Organelle
Bioenergetics).

Nucleic Acid Synthesis/Breakdown

Deoxyribose nucleic acid (DNA) was first discovered in 1869
by the Swiss scientist, Friedrich Miescher. Nucleic acids are
biopolymers comprised of nucleotide monomers that are
composed of three moieties, a five-carbon sugar, a phosphate
group, and a nitrogenous base. DNA contains deoxyribose
as the sugar component and RNA contains the sugar ribose.
Polynucleotides are formed by covalent linkages between
the phosphate of one nucleotide and the sugar of another,
resulting in phosphodiester linkages. Nucleic acids are the
major information molecules of all known forms of life by
encoding, transmitting, and expressing genetic information.
Elucidation of the structure of DNA by Watson and Crick in
1953 immediately suggested the semiconservative mechanism
by which DNA is accurately reproduced and later demon-
strated by Meselson and Stahl. The ability of DNA sequences
to be copied into RNA or into copies of DNA with high fidelity
in a template-dependent fashion is one of the most funda-
mentally important processes in living organisms. The transfer
of genetic information from DNA to RNA to protein is con-
sidered the fundamental process of all living systems. How-
ever, as occurs in certain viruses, it is possible to transfer
sequence-encoded information from RNA to DNA by reverse
transcription. Topics in this section of the Encyclopedia of Cell
Biology cover all major roles of nucleic acids in information
transfer, including the mechanisms by which genetic infor-
mation is regulated. This section additionally covers how RNA
molecules transmit, edit, splice, and regulate the expression of
genetic information – processes that greatly increase the
number of combinations in which protein-coding sequences
can be used.

Topics in this section, in order, are: Comparison of Bac-
terial and Eukaryotic Replisome Components, which describes
the structures and mechanisms of the protein machinery
that replicates DNA in bacteria and eukaryotes; Transfer
RNA, which not only describes how tRNAs serve as adaptor
molecules to translate mRNA sequences into protein sequence
but also describes tRNA’s roles in many other cellular
processes; Messenger RNA (mRNA): The Link between
DNA and Protein compares mRNA’s structure/functions in
bacteria and eukaryotes and how mutations in untranslated

regions of mRNAs contribute to human disease; Telomeres
and Telomerase describes the end-capping structures, called
telomeres, on eukaryotic chromosomes that are critical for
chromosome stability, and discusses the importance of telo-
merase enzymes in maintenance of the telomere; Telomere
Biology describes how telomeres maintain genome stability
and prevent cellular senescence, and how cancer cells bypass
the normal limits on telomere elongation to gain immortality;
Small RNAs/Cancer reviews the discovery, biogenesis, and
roles of microRNAs in cancer etiology; Eukaryotic Nucleotide
Excision Repair describes highly conserved DNA repair
mechanisms that remove and repair a wide variety of chemical
lesions in DNA structure, which in some cases contribute to
the onset of cancer; The Base Excision Repair Pathway reviews
a pathway that is critical to genomic stability by correcting
small DNA base lesions, first by excising the damaged locus,
and then by replacing damaged nucleotides with the correct
ones; Nonhomologous DNA End Joining describes and
compares how cells repair double-strand breaks in DNA by
either nonhomologous DNA end joining or by homologous
recombination (HR) mechanisms; DNA Repair by Homolo-
gous Recombination reviews mechanisms and proteins in-
volved in repairing complex DNA damage by HR and how
specific HR proteins protect stalled replication forks; Pro-
karyotic Transcription reviews the current understanding of
transcription in bacteria from the recognition of DNA to the
termination of RNA synthesis; Eukaryotic Transcriptional
Regulation describes current models of transcriptional regu-
lation in eukaryotes; Distant Activation of Transcription
by Enhancers reviews how distantly-acting DNA enhancers
activate transcription by chromatin looping; miRNAs/Small
Noncoding RNAs describes how precursor mRNAs in eu-
karyotes are spliced to remove intervening sequences by a
complex ribonucleoprotein complex called the splicesome;
Pre-mRNA Splicing: Function and Dysfunction further ex-
pands on the process of splicing pre-mRNA and describes
human diseases resulting from dysregulation of the splicing
machinery; Ribosomal RNAs and Protein Synthesis discusses
the structure of ribosomes and how the ribosomal RNA
functions in the synthesis of proteins; miRNAs/Small Non-
coding RNAs reviews our current knowledge about the
biological synthesis and processing of microRNAs, which are
typically 22 nucleotides long and function in translational
repression and other regulatory processes; The Interplay
between Eukaryotic mRNA Degradation and Translation
summarizes current views on how eukaryotic mRNA degrad-
ation interconnects with mRNA translation to regulate gene
expression; Riboswitches and Ribozymes describes the bio-
logical roles and potential as tools of riboswitches and ribo-
zymes, which are regions of mRNA that regulate gene
expression by binding small molecules, or are RNA that
catalyze chemical reactions, respectively; Transgenesis and
Gene Replacement presents an overview of the most widely
used methods for experimentally manipulating the genomes
of mammals to understand gene functions; and see Viral
Nucleic Acids provides an overview of viral genomes, which
can be either RNA or DNA, and how they are replicated in
host cells. This collection of articles on nucleic acids not only
provide the reader a comprehensive understanding of the state
of the science in nucleic acid research, but also provides
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a solid foundation for more focused investigations into
the topic.

Protein Synthesis and Degradation

This section focuses on molecular mechanisms underlying
the regulation of protein concentration and active forms of
proteins both inside and outside cells and highlights dis-
eases/pathologies that can result in dysregulation of proteins.
Just as the knowledge/understanding of RNA and DNA and
other fundamental components of cells and tissues have
evolved, so have those of the proteins that make up cells, the
extracellular environment, and fluids of living organisms. The
complexity of the interactions of proteins has become ap-
parent and the importance of networks of proteins (death
pathways, blood coagulation, complement), interacting pro-
teases (the ‘protease web’), extracellular matrix, intracellular
scaffolds, and membrane, organelle, and factor interactions
with intracellular and extracellular proteins are now clearly
realized.

Many of the structures involved in the synthesis of pro-
teins have been solved (including the ribosome, translation
factors) and there has been considerable progress clarifying
the mechanisms that control initiation, elongation, and
termination in eukaryotic cells (see Components, Initiation,
Elongation, Termination, and Regulation). Similarly the
components of the mitochondrial protein biosynthetic ma-
chinery and mechanisms of transcription and translation
have been elucidated (see The Protein Biosynthetic Machinery
of Mitochondria). Many proteins are synthesized as inactive
or latent proteins (proproteins) and have to be activated
by enzymes such as proprotein convertases and kallikreins
(see Regulated Proteolysis of Signaling Molecules: The Pro-
protein Convertases; Kallikrein). Biosynthesis of secretory
proteins that takes place in the endoplasmic reticulum
(ER) involves multiple factors (signalases, chaperones, iso-
merases) to form a mature correctly folded protein (see Bio-
genesis of Secretory Proteins). Factors are in place for quality
control in the ER to recognize and shuttle incorrectly folded
proteins into the ER-associated degradation pathway (see
Endoplasmic Reticulum-Associated Degradation and Protein
Quality Control).

It was once believed one protease could degrade many
proteins in a relatively unregulated manner (somewhat like
trypsin in the intestinal tract). It is now known that there are
multiple proteases in all cells and fluids that are highly regu-
lated. There are B600 genes for proteases in the human gen-
ome and if there were no regulation there would be
widespread necrosis, cell death, and destruction. It is clear that
proteolytic systems are highly regulated by localization,
activation/inhibition, synthesis of latent proenzymes, inter-
actions with multiple components such as cofactors, carbo-
hydrates, lipids, membranes, organelles, and the pH of the
environment. The complement of all proteases and their
substrates is known as ‘the degradome’ and high-throughput
methods have recently been developed to study the network
of protease and substrate interactions (see Mass Spectrometry-
based Methodologies for Studying Proteolytic Networks and
the Degradome).

Proteolytic systems exist both intracellularly and extra-
cellularly as well as at cell membranes. The mammalian in-
testinal system serves as a good example of coordinated
digestion of food proteins that involves many different types
of extracellular proteases (see Digestive Proteases: Roles in the
Human Alimentary Tract). Blood coagulation represents an-
other extracellular system that is critical to host defense and
hemostasis and involves cells (e.g., platelets), a host of plasma
proteins (most of which are proteases) and protease inhibi-
tors, which are highly controlled to form and degrade blood
clots appropriately (see Overview of Blood Coagulation
and the Pathophysiology of Blood Coagulation Disorders).
The complement system involves highly regulated proteolytic
enzymes critical to our immune systems that remove
targeted pathogens (see Molecular Mechanisms Underlying the
Actions of the Complement System). The proteasome is key
to intracellular proteolytic systems and works in coordination
with ubiquitin-tagged proteins for protein quality control
and several signaling systems (see Ubiquitin, Ubiquitin-Like
Proteins, and Proteasome-Mediated Degradation). In add-
ition, the intracellular lysosomal system containing multiple
hydrolases (e.g., proteases, glycosidases) that interact with
cellular and extracellular components to degrade and
maintain protein/amino acid homeostasis (see Role of Lyso-
somes in Intracellular Degradation). Dysregulation of all
of these systems is associated with disease, and there are
specific articles on lysosomal storage diseases (see Lysosomal
Diseases) and the proteases involved in the progression
of cancer (see Cancer – Proteases in the Progression and
Metastasis).

Individual proteases are discussed in many articles and
some that are highlighted are matrix metalloproteinases
(see Matrix Metalloproteinases), calpain (see The Calpain
Proteolytic System), ADAMS and ADAMTS (see ADAMTS
Proteases: Mediators of Physiological and Pathogenic Extra-
cellular Proteolysis; ADAMs Regulate Cell–Cell Interactions
by Controlling the Function of the EGF-Receptor, TNFα
and Notch), membrane-anchored serine proteases (see Extra-
cellular: Plasma Membrane Proteases – Serine Proteases),
meprins (see Metalloproteases Meprin α and Meprin β in
Health and Disease), kallikreins (see Kallikrein), and aspartic
proteases (see Aspartic Proteases of Alzheimer’s Disease:
β- and γ-Secretases; Cathepsin E: An Aspartic Protease with
Diverse Functions and Biomedical Implications). Protease
inhibitors are also critical to the regulation of protein
degradation and disease. Endogenous polypeptide protease
inhibitors exist for many of the proteolytic systems
(e.g., apoptosis, blood coagulation; Naturally-Occurring
Polypeptide Inhibitors: Cystatins/Stefins, Inhibitors of Apop-
tosis (IAPs), Serpins, and Tissue Inhibitors of Metalloprotei-
nases (TIMPs)). Alpha-1-antitrypsin deficiency is an example
of how important endogenous protein inhibitors are for
preventing disease, as this deficiency leads to liver damage and
emphysema (see Alpha-1-Antitrypsin Deficiency: A Misfolded
Secretory Glycoprotein Damages the Liver by Proteotoxicity
and Its Reduced Secretion Predisposes to Emphysematous
Lung Disease Because of Protease-Inhibitor Imbalance).
Examples of synthetic protease inhibitors used to control
disease process are blood pressure inhibitors (ACE inhibitors;
Blood Pressure, Proteases and Inhibitors) and HIV-protease
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inhibitors that have been designed to manage AIDS (see
Inhibitors of HIV Protease).

In summary, the purpose of part I of the Encyclopedia
is to describe the chemical principles and the molecular
components/organization of the cell and its environment in

sufficient detail to allow a clearer understanding of how these
components are then assembled, function, and are regulated at
a higher level – the themes of the next three parts of the
Encyclopedia.
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AND CONCEPTS: BASIC PRINCIPLES

Contents
Chemical and Physical Principles
Biocatalysis

Chemical and Physical Principles
H Oubrahim and P Boon Chock, National Institutes of Health, Bethesda, MD, USA

Published by Elsevier Inc.

Introduction

Cells of all living organisms contain four classes of macro-
molecules or polymers consisting mainly of carbon, oxygen,
nitrogen, hydrogen, and a small quantity of sulfur and phos-
phate atoms. Proteins are polymers of amino acids, which
serve as enzymes, regulators, structure elements, and receptors;
DNA and RNA are polymers of nucleotides, which store and
transmit genetic information, and polysaccharides are poly-
mers of simple sugars, which serve as energy-rich fuel stores.
To investigate the molecular processes that make life possible,
it is essential that investigators are well versed in fundamental
chemical and physical principles, since they govern both the
thermodynamics and dynamics of biochemical processes.

Living cells must perform work to stay alive, grow, replicate,
and evolve, while maintaining themselves in a dynamic steady
state, far from equilibrium with their environment. To under-
stand how cells accomplish these processes, within the topic
limitation of this article, we focus our discussion
on the physical and chemical principles that govern interactions
between cellular molecules. They include the energetic aspect
that determines whether a molecular process can occur spon-
taneously, and the kinetic and regulatory aspects of biological
processes, as well as effects of the crowded cellular environment.

The Laws of Thermodynamics and Living Cells

Living cells have developed highly efficient mechanisms to
utilize the energy obtained from chemical fuels and light
to carry out numerous energy-requiring processes in order to
maintain themselves in dynamic steady states. When a cell fails
to obtain energy, it will die and decay toward equilibrium with
its surroundings. To understand how the energy is extracted,
stored and channeled into useful work in living cells, we
address cellular energy conversions in context of the law of
thermodynamics and the quantitative relationships among
free energy, enthalpy and entropy.

The laws of thermodynamics are general principles that
provide the quantitative description of heat and energy chan-
ges and chemical equilibria. These laws apply to all chemical
and physical processes, including biochemical reactions (van
Holde et al., 1998; Edsall and Gutfreund, 1983; Alberty, 2003).
Their importance resides in the fact that they determine the
conditions in which a biochemical reaction can proceed.

In thermodynamics, the field of observation is divided into
two conceptual regions: the system and the surroundings. The
‘system’ refers to everything within a defined region of space,
including all the constituent reactants, products, solvent of
the reaction, and the immediate atmosphere; while the system
and its surroundings together constitute the universe. When
the system does not exchange either matter or energy with its
surroundings, it is considered isolated. If the system exchanges
only energy and not matter with its surroundings, it is defined
as a closed system. An open system is one that exchanges both
matter and energy with its surroundings. The first law of
thermodynamics describes the principle of the conservation
of energy. In any physical or chemical change, the total energy,
E, of a system and its surroundings is constant, although the
form of the energy may vary. In other words, the first law states
that E can be changed only by the flow of energy as heat or by
work. Consequently, energy can neither be created nor des-
troyed, it can only be changed from one form to another as
shown in the mathematical expression below,

DE¼ EB–EA ¼Q�W ½1�

where EA and EB is the energy of a system at the beginning and
the end of the transformation, respectively, Q is the heat
absorbed, and W is the work done by the system. Note the
change in energy of a system depends only on the initial and
final states, independent of the transformation pathway.

When a given chemical reaction occurs under constant
pressure, the amount of heat released or absorbed reflects
the nature and number of chemical bonds altered during the
course of the reaction. This heat of reaction is referred to as
enthalpy, H, expressed as joules/mol or calories/mol
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(1 cal¼4.184 J). Because the total enthalpy of a system cannot
be measured directly, only the change of enthalpy, DH, is
evaluated. If heat is being absorbed by the reaction, its DH is
positive and the reaction is endothermic. On the other hand, if
heat is generated by the reaction, the reaction is exothermic
and its DH is negative. However, the first law of thermo-
dynamics is insufficient to predict whether a reaction can occur
spontaneously since some endothermic reactions do occur
spontaneously. Thus, a function other than DH is necessary to
account for this observation. One such function is the entropy,
S, expressed in unit of J/mol K. Note that entropy is a quan-
titative expression for the randomness or disorder in a system.
When the products of a reaction are less complex and more
disordered than the reactants, the reaction proceeds with a
gain in entropy. It is worth mentioning that entropy is a central
concept in biochemistry since life requires continual main-
tenance of order while increased randomness is the natural
tendency. The second law of thermodynamics states that a
process can occur spontaneously, if and only if, the sum of the
entropies of the system and its surroundings is 40. This in-
dicates that the entropy of a system can decrease during a
spontaneous reaction, if the entropy of the surroundings in-
creases such that their sum is positive. However, the entropy
changes of chemical reactions are not readily determined and
the second law indicates that to determine whether the re-
action can occur spontaneously requires one to know the value
of the entropy changes for both the surroundings and the
system of interest. At constant temperature and pressure, a
condition fulfilled by most biological systems, this constraint
imposed by the second law can be obviated by using a dif-
ferent thermodynamic state function termed free energy (G) or
Gibbs’ free energy, derived from the combining of the first and
second law of thermodynamics by Gibbs (1876–1878, 1878).

The basic equation is:

DG¼ DH–TDS ½2�
where DG is the change in Gibbs free energy of a reaction
under constant pressure, P, and temperature, T, and DS and
DH is the change in entropy and in enthalpy of the reaction,
respectively.

Gibbs Free Energy Always Decreases for a
Spontaneous Process at Constant Temperature and
Pressure

All reactions are generally affected by two forces: The tendency
to achieve the most stable chemical bond, indicated by DH,
and the tendency to achieve the highest degree of randomness,
expressed by DS. The net effect of these two factors is summed
up by the change of Gibbs free energy described by eqn [2].
Thus, DG provides a valuable criterion for determining whe-
ther a reaction can occur spontaneously. By convention, DS is
positive when entropy increases and DH is negative when heat
is released by the system to its surroundings. When either of
these conditions is energetically favorable the reaction tends to
yield a negative DG, a condition for a spontaneous reaction.
To determine the actual free energy change, DG, for the
reaction [3], one needs to take into account the nature of the
reactants and products as well as their concentrations as shown

in the eqn [4].

aA þ bB⇌cCþ dD ½3�

where a, b, c, and d represent the stoichiometry of the indi-
cated components.

DG¼ DG0 þ RTln ½C�c½D�d=½A�a½B�b
� �

½4�

where DG0 is the standard free energy change, a constant that
is characteristic of each reaction, R is the gas constant, T is the
absolute temperature, and [A], [B], [C] and [D] are molar
concentrations of reactants and products. (More precisely, the
activity, defined as a thermodynamic function that correlates
changes in chemical potential with changes in concentration,
through relations formally equivalent to those for ideal sys-
tems. For practical reasons, molar concentration is used in
biochemical literature.) DG0 is the change in free energy under
standard conditions (298 K and 1 atm) when reactants and
products are initially present at 1 M, or for gas at 1 atm.
Equation [4] indicates that DG of a reaction depends on the
nature of the reactants, expressed by DG0, and their concen-
trations, expressed by the second term of the equation.

With this definition, the standard state for reactions in-
volving hydrogen ions is [Hþ ]¼1 M or pH 0. However, most
biochemical reactions occur in relatively well buffered aque-
ous media at a pH around 7, such that both the pH and the
concentration of water (55.5 M) are essentially constant. To
simplify DG0 calculation, biochemists adopted a convention
that in the biochemical standard state, [Hþ ] is 10�7 M (pH7),
[H2O] is 55.5 M, and when the reactions involve Mg2þ (when
ATP is a reactant), [Mg2þ ] is 1 mM, a standard state different
from that used in chemistry and physics. With this convention,
when H2O, Hþ , or Mg2þ are reactants or products, their
concentrations are not included in the Keq expression, but are
incorporated, with a value of 1 for each of their activities, into
the constants K′eq and DG′0. These constants are referred to as
standard transformed constants written with a prime, to dis-
tinguish them from the standard constants used by chemists
and physicists. Thus, the standard transformed free energy
change at pH 7 is denoted as DG′0, which can be calculated
using the equilibrium constant, K′eq, and the equation
DG′0¼ �RT ln K′eq, where K′eq¼[C]ceq[D]deq/[A]

a
eq[B]

b
eq.

Therefore, the criterion for the spontaneity of a biochemical
reaction depends on the value of DG, expressed as

DG¼ DG′0 þ RT ln ½products�=½reactants�ð Þ ½5�

Gibbs Free Energy Changes are Additive

The free energy change of a reaction is independent of its re-
action pathway. However, when a reaction consists of two or
more successive reactions, and each of the two successive re-
actions shares a common intermediate, the Gibbs free energy
change of the net reaction is equal to the sum of the DG of the
individual reactions. In other words, the Gibbs free energy
changes are additive. This property allows one to determine
the free energy of the formation of complex molecules needed
to sustain living cells, from DG of the individual reaction steps
that lead to the formation of the final complex molecules.
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Consequently, a thermodynamically unfavorable reaction,
with a positive DG, can be driven by a thermodynamically
favorable reaction to yield a negative DG for the sum of free
energy changes of the two reactions. Utilizing this energy-
coupling strategy, biological systems are able to synthesize and
maintain the information-rich polymers required to sustain
living cells, and to formulate their metabolic pathways by
coupling enzyme-catalyzed reactions such that the overall DG
of the pathway is negative. In biological systems, this principle
is frequently utilized to couple the energy of ATP hydrolysis, a
highly exergonic reaction, to otherwise unfavorable reactions,
such as those involved in the biosynthetic pathways.

Coupling of ATP Hydrolysis to Drive
Thermodynamically Unfavorable Reactions

ATP, maintained at a relatively high and constant level in the
cell, has been considered as the molecular currency of intra-
cellular energy transfer. It has been extensively utilized to drive
thermodynamically unfavorable biochemical pathways. To
illustrate how this principle works, we consider the coupling
of ATP hydrolysis to the synthesis of glucose 6-phosphate, an
endergonic first reaction step in glucose oxidation pathway:

Glucoseþ Pi-glucose 6-phosphate

DG0
1 ¼ 3:3 kcal=mol; endergonic

� � ½6�

where Pi is inorganic phosphate. Keq1¼ [Glucose 6-phosphate]/
([Glucose][Pi])¼10(�DG0/1.36)¼3.98� 10�3 M�1 at 25 1C (Note
2.3�RT¼1.36 kcal mol�1). This indicates that there is no
net conversion if the molar ratio is equal to or larger than
3.98� 10�3 M�1. When this reaction is coupled to:

ATP-ADPþ Pi ðDGo
2 ¼ � 7:3 kcal=mol; exergonicÞ ½7�

where Keq2¼([ADP][Pi])/[ATP]¼2.18� 105 M. The sum of
these two reactions becomes

Glucoseþ ATP-Glucose 6-phosphateþ ADP

ðDG0
sum ¼ � 4 kcal=mol; exergonicÞ ½8�

The equilibrium constant of this coupled reaction becomes

Keq ¼ Keq1 � Keq2

¼ ½Glucose 6-phosphate�½ADP�ð Þ= ½Glucose�½ATP�ð Þ
¼ 10ð�DGosum=1:36Þ ¼ 8:7� 102:

At equilibrium, the ratio of [Glucose 6-phosphate]/[Glucose]
[Pi]¼Keq� [ATP]eq/([ADP]eq[Pi]eq).

The ATP generating system in cells maintains the [ATP]eq/
([ADP]eq[Pi]eq) at a high level, typically on the order of
500; thus

½Glucose 6-phosphate�= ½Glucose�½Pi�ð Þ ¼ 8:7� 102

� 500¼ 4:35� 105M�1

Together, this indicates that by coupling the conversion of
glucose to glucose 6-phosphate to ATP hydrolysis in the cell,

under standard conditions would shift the equilibrium ratio of
[Glucose 6-phosphate] to [Glucose]� [Pi] by a factor of 108.

This example demonstrates the thermodynamic essence of
ATP’s action as an energy-coupling agent. Since all living cells
maintain a concentration of ATP much higher than its equi-
librium concentration, coupling of a cellular reaction with the
hydrolysis of an ATP molecule can change the equilibrium
ratio of products to reactants by a huge factor, for example,
by a factor of 108. Thus, ATP functions as a major carrier
of chemical energy in cells to convert thermodynamically
unfavorable reaction sequences into favorable ones.

Reaction Rate and Rate Constant

Note that DG of a reaction depends only on the nature of the
reaction and the concentration of both reactants and products,
but DG is independent of the mechanistic pathway. Further-
more, DG does not provide information on the rate of a
chemical reaction. In fact some thermodynamically favorable
reactions fail to take place at measurable rates due to the high
activation energy required for the reactions. To overcome this
problem, biological systems utilize enzymes to catalyze slow
reactions by lowering the activation energy via an alternative
reaction pathway to facilitate the formation of the transition
state. Like all catalysts, enzymes cannot alter the equilibrium
constants of a reaction. They only increase the rate by which a
reaction proceeds in the direction governed by thermo-
dynamics. In other words, thermodynamics cannot provide
information about intervening states of the system.

While thermodynamics predicts whether a reaction can
occur, and how much energy can be derived from them, the
concentration of most molecules in living cells is maintained
in dynamic steady states, and not by equilibrium constants.
Therefore, rates of biochemical reactions, mostly catalyzed by
enzymes, play an important role in shaping the metabolic
pathways in living cells. The fact that about a quarter of
the protein‐encoding genes in the human genome encode
enzymes and their regulatory proteins points to the import-
ance of understanding the kinetics of biochemical reactions
in cellular regulation and metabolism (For further reading on
kinetics, see references Moore and Pearson, 1981; Purich,
2010; Connors, 1990).

The rate, d[P]/dt, for the formation of a reaction product, P,
is determined by the concentration of the reactant(s) and its
rate constant, k. In general, a rate equation has the form

d½P�=dt ¼ k½S1�a½S2�b… ½9�

The value of k is independent of the concentration of S1, S2…,
but dependent on the nature of reaction investigated, and the
environmental conditions of the reaction, such as temperature
and chemical properties of the reaction medium. The power
variables a and b represent the order of reaction with respect to
S1, and S2, respectively, and their sum (aþ b þ…) represents
the overall order of the reaction. When eqn [9] is in a form
of simple rate equations, it represents the rate expression of
elementary (single-step) reactions. Some complex (multiple
step) reactions may also possess simple rate equations.
Nevertheless, complicated rate equations are required for
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kinetic analysis of complex reactions such as those involving
parallel or consecutive reactions.

When a reaction is unimolecular, eqn [9] is reduced to d[P]/
dt¼k[S1]. In this case, the rate of the reaction depends only on k
and the concentration of S1. This reaction is defined as a first-
order reaction, and k is a first order-rate constant that has a unit
of reciprocal time, for example, s�1. A first-order reaction pro-
ceeds via an exponential function and its half-life, t1/2¼ ln 2/k or
0.693/k, can be used to calculate its rate constant. Note that the
t1/2 of a first-order reaction is constant, independent of the initial
time point used for analysis. In the case of a bimolecular re-
action, the reaction rate depends on the concentration of two
different reactants, or two molecules of the same reactant, such
that d[P]/dt¼k[S1]

2 or k[S1][S2], where k is the second-order rate
constant, with an unit of M�1s�1. The time course of the second-
order reaction is qualitatively similar to that of the first-order
reaction, except the consumption of the reactant(s) proceeds
faster initially and slower toward the end of the reaction due to
the nature of second-order dependency. A third-order reaction,
whose rate depends on the product of three concentrations, is
relatively rare. In the case of a zero-order reaction, its rate is
independent of the concentration of the reactant, and the unit of
its rate constant is M s�1. A zero-order reaction proceeds with a
linear time course. This type of reaction is not commonly ob-
served except in heterogeneous systems and in catalyzed re-
actions when the catalyst is present at a significantly lower
concentration than that of the reactant, such that the catalyst
is saturated with the reactant. Under this condition, the
concentration of the reactant will not change significantly during
the course of the initial rate measurement, and the reaction rate
depends only on the concentration of the catalyst used.

Reaction Rate-Limiting Step

When the conversion of reactant S to product P proceeds via
formation of a number of intermediates, for example, I1 and I2,
and if the formation of I1, I2, or P is very much slower than the
rest of the reaction steps, then the rate of P formation will be
limited by the rate of the slowest step, a reaction that possesses
the highest activation energy, DG‡. This slowest step is called a
rate-limiting or rate-determining step since it is the ‘bottleneck’
of the overall reaction. Strictly speaking, this flow analogy is
valid only for consecutive and irreversible reactions, and it can
be misleading if the reverse reaction is significant. In fact even
for irreversible reactions, the rate-determining step concept is
meaningful only if one of the reactions is much slower than the
others. Note when the overall reaction includes more than two
elementary steps, the situation may not be easy to analyze, since
the product of the nth step is the reactant of the (nþ 1)st step.
For these two states to be represented by the same free energy
they must have the same composition. This means that the
stoichiometric composition must be constant throughout the
entire successive reactions (Boyd, 1978).

Rate Constant and Activation Energy

To co-relate the magnitude of a rate constant to Gibbs free
energy of activation, DG‡, a transition-state theory was derived.

This theory assumes that the transition state is in equilibrium
with reactants, such that the population of the transition state
is governed by Gibbs free energy of activation, DG‡. Thus, the
magnitude of a rate constant can be expressed as a function of
Gibbs free energy of activation and temperature:

k¼ kBT=hð Þðe�DG‡=RTÞ ½10�

where kB is the Boltzmann constant, and h is the Planck’s
constant. The important point to emphasize here is that the
relationship between the rate constant and the activation en-
ergy, DG‡, is inverse and exponential. In other words, this is
the basis for the statement that lower activation energy yields a
faster reaction rate.

Enzyme Kinetics

Equation [10] shows that the function of catalysts is to lower
the activation energy, DG‡, of a reaction and thereby speed up
the reaction rate. Most of the catalysts in biological systems are
enzymes, and the majority of enzymes are proteins. The ma-
jority of enzymes are known to catalyze only one particular
type of reaction under very limited chemical and physical
conditions, and they are capable of enhancing a reaction rate
up to factors of 106 or more. Enzyme-catalyzed reactions are
characterized by the formation of an enzyme–substrate, ES,
complex. The catalytic specificity and capacity of an enzyme
are derived mainly from multiple weak interactions between
the enzyme and its substrates, mediated by hydrogen bond
formation, hydrophobic, and ionic interactions. Furthermore,
the enzyme active site tends to be structured such that some of
these interactions occurred specifically to stabilize the transi-
tion state. The need for multiple interactions could be one of
the reasons that an enzyme is a relatively large size molecule.
The enzyme-substrate binding energy could be utilized to
offset the energy required for activation, as well as to induce
protein conformational change at the active site to properly
position catalytic functional groups to facilitate the cleavage
and formation of chemical bonds by a variety of mechanisms,
including general acid–base catalysis, covalent catalysis, and
metal ion catalysis. These processes could lead to transient
covalent interactions with a substrate or group transfer to or
from the enzyme, to provide a new, lower-energy reaction
pathway. Once the catalytic action is completed, including the
release of the tightly bound product(s), the enzyme reverts to
its unbound state.

Multiple techniques have been employed to elucidate the
catalytic mechanism of purified enzymes. They include three-
dimensional structural analysis of enzymes, coupled with
chemical modification and site-directed mutagenesis to
examine the role of individual amino acid residues in enzyme
structure and action. However, kinetic study of enzyme action
remains the most important method for elucidating the
mechanistic action of enzymes. Kinetic properties of many
enzymes can be described by the Michaelis–Menten model. In
this model, an enzyme, E, first forms an ES complex, where S is
the substrate, prior to product, P. formation.

Eþ S ⇌
k1

k�1

ES⟹
k2

Eþ P ½11�
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The initial rate of product generation can be described by the
Michaelis–Menten equation:

v¼ Vmax ½S�=ð½S� þ KMÞð Þ ½12�

where Vmax is the reaction rate when the enzyme is fully sat-
urated with the substrate and KM is the Michaelis constant,
KM¼(k�1þ k2)/k1. When k2 is rate-limiting such that k2≪k�1,
KM is reduced to k�1/k1, the dissociation constant of ES.
It should be pointed out that the validity of the steady-state
method does not depend on the assumption that d[ES]/dt¼0.
This assumption is not valid at the beginning of the reaction
when [ES] is being built up, and toward the end of the reaction
when [S] is too low to maintain a constant [ES]. This problem
was resolved by Wong in 1975 (Wong, 1975) as follow:

Based on the reaction scheme shown in eqn [11],

d ES½ �=dt ¼ k1½S�ð½E�0 � ½ES�Þ � k�1 þ k2ð Þ½ES� ½13�
The initial rate of product formation is,

v¼ k2½ES� ¼ k2 k1½S�½E�0 � d½ES�=dt� �
= k1½S� þ k�1 þ k2ð Þ ½14�

When d[ES]/dt is small relative to k1[S][E]0 where [E]0 is the
total concentration of the enzyme used, then

v¼ k2½ES� ¼ k1k2½S�½E�0= k1½S� þ k�1 þ k2ð Þ ½15�

During the early phase of the reaction, if [S]≫[E]0, the rate of
change in [ES] due to diminishing [S] will be relatively slow.
Thus, the validity of steady state is closely tied to the high
substrate to enzyme ratio. The maximal rate, Vmax¼k2[E]0, and
k2, also known as kcat, or turnover number, is the number of
substrate molecules being converted into product per unit
time at a single catalytic site when the enzyme is fully saturated
with substrate. The ratio kcat/KM provides a good indication of
the catalytic efficiency of an enzyme. Note that the Michaelis–
Menten equation is also applicable to bisubstrate reactions,
which proceed via a ternary complex or double-displacement
pathways. A short-hand method of expressing two or more
substrates or products has been proposed by Cleland to dif-
ferentiate order, random, Theorell–Chance, and Ping–Pong
mechanisms (Cleland, 1963). It should be pointed out
that while the kinetic constants can be accurately determined
from in vitro study using a high substrate to enzyme ratio,
this unique condition required for validating the Michaelis–
Menten equation may not be met under cellular conditions.
Therefore, one needs to be cautious in drawing conclusions
from steady-state kinetic study under such circumstances
because it can lead to intolerably high errors if analyzed with
the unmodified Michealis–Menten expression (Cha, 1970).

Allosteric Enzymes

All enzymes that exhibit hyperbolic kinetics with respect to
increasing substrate concentration follow Michaelis–Menten
kinetics, and their KM represents the [S] required to achieve a
rate equal to half Vmax. However, the Michaelis–Menten model
fails to account for the kinetic properties of many enzymes. An
important group of enzymes that do not obey Michaelis–
Menten kinetics are the allosteric enzymes. An Allosteric

enzyme/protein is one in which binding of one substrate or
ligand to one site affects the binding affinity of another site in
the same molecule. When binding of one ligand impairs the
subsequent binding of other ligands, its kinetics exhibits a
negative cooperativity. In contrast, the activity of most allos-
teric enzymes displays a sigmoidal kinetics due to substrate
binding at one site that promotes the subsequent binding
affinity at a distinctly different site. This group of enzymes is
generally, but need not, consists of multiple subunits or
multiple active sites. They play a crucial role in many funda-
mental biological processes, including, but not limited to, cell
signaling and metabolism regulation since they are susceptible
to be regulated by signaling molecules. With the sigmoidal
saturation response, the value of [S] at half-maximal rate
cannot be designated as KM because the enzymatic activity
does not follow a hyperbolic function. Thus, the symbol S0.5
or K0.5 is often used to represent the substrate concentration
required to achieve half-maximal velocity of the allosteric
enzyme. It should be pointed out that this class of enzyme has
important regulatory properties. On one hand, sigmoidal
kinetics provides a mean for allosteric enzymes to greatly alter
their catalytic output in response to a relatively small change
in substrate/effector concentration. On the other hand, an
enzyme with a strong negative cooperativity can provide a
means for a rapid surge or decrease in enzymatic activity
through changes in the concentration of an effector that de-
sensitizes the negative cooperativity (Huang et al., 1982).
Interestingly, to date, among the known allosteric proteins,
oxygen binding to hemoglobin, an oxygen carrying protein
consists of four oxygen binding sites, is the most thoroughly
studied. Consequently, hemoglobin is sometimes being re-
ferred to as an ‘honorary allosteric enzyme.’

From a kinetic standpoint a multisubunit enzyme is not
required to achieve a cooperative type of kinetics, since it can
be generated by a monomeric enzyme that can exist in several
conformations at steady state or utilize alternative pathways
in a multisubstrate reaction. The fact that regulatory enzymes,
almost without exception, are polymeric, argues strongly
for the role of subunit interaction in the cooperativity. The
potential for achieving sophisticated control is undoubtedly
greater with a polymeric, than with a monomeric enzyme.
However, most of prevailing models for explaining the co-
operative effects of subunits are based on ligand-promoted
conformational equilibria. While they adequately describe
the change of enzymatic activity in response to metabolite
concentration, they fail to link intersubunit cooperation to the
catalytic mechanism per se.

Concerted and Sequential Models

Two major models, the concerted model of Monod et al.
(1965), and the sequential model of Koshland et al. (1966),
have been proposed to explain the cooperative binding of
ligands to multisubunit proteins. In the concerted model,
Monod et al. assumed that an enzyme having identical and
noninteracting subunits arranged in a symmetrical manner can
exist in two conformational states, T and R, with different
ligand binding affinities. A key feature of the Monod model is
the conservation of symmetry, i.e., the T and R transition is a
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concerted one such that all subunits in a given state are
equivalent. The cooperative phenomenon, however, arises
from the preexisting T⇌R equilibrium in an apparent coop-
erativity. This two-state Monod model can be extended to
accommodate more complicated situations. For instance, the
original Monod model based on rapid equilibria cannot gen-
erate negative cooperativity. However, a proposed pseudo-
conservative transition has been demonstrated as a modified
Monod model that allows the two-state model to accom-
modate both positive and negative cooperativities (Viratelle
and Seydoux, 1975). The sequential model of Koshland et al.
is based on the induced-fit theory. Mathematically, this model
is similar to those developed by Adair (Adair, 1925) and
Pauling (Pauling, 1935). In this case the subunits are initially
identical and binding of a ligand to one subunit affects the
subsequent binding of ligands to the remaining subunits. This
model is often referred to as the sequential model as opposed
to the concerted model of Monod et al. The sequential model
can be readily adapted to the case where the subunits
are initially nonidentical (preexisting asymmetry). Since the
binding of a ligand to one subunit can either improve or
impair the binding affinities for the remaining subunits,
positive, negative, and ‘mixed’ cooperativities may result.
Importantly, both concerted and sequential models have
been successfully applied, for example, by Schachman’s and
Koshland’s groups, to the analysis of cooperative systems
(Huang et al., 1982).

Water as Life’s Aether

Water, representing about 70% of cell’s weight, plays a vital
role in sustaining all forms of life. Therefore many aspects
of life are affected by the physical and chemical properties of
water, and many of these properties are derived from different
electronegativities of H and O atoms that make water a highly
polar molecule. As a consequence, most water molecules are
in contact with their neighboring molecules through hydrogen
bonding with itself and with solutes (Liu et al., 1996). The
hydrogen bonds are rapidly broken and reformed, with
an average lifetime of B10�12 s. The capability of hydrogen
bonding and its polarity make water a highly interacting
molecule, as well as an excellent solvent for polar solutes by
weakening electrostatic forces and forming hydrogen bonds
between polar molecules. However, this property of water also
poses a problem for living cells because it weakens interactions
between polar molecules. To overcome this problem, bio-
chemical systems generate hydrophobic microenvironments
to maintain polar interactions at their maximal strength and
specificity where needed. Furthermore, since water binds
strongly to itself, it induces self-aggregation of nonpolar
molecules such as lipids in an aqueous medium. This capacity
of water facilitates the formation of cellular membranes that
define the boundaries of cells and their internal components.

Another unique property of water is that it can ionize into
Hþ and OH� where Hþ exists as hydronium ions, H3O

þ , in
aqueous medium. For simplicity Hþ is used instead of the
actual species present. On average, 1 out of 107 water mol-
ecules is ionized in its pure liquid. In biochemistry the con-
centration of Hþ is expressed as pH, defined as pH¼ � log

[Hþ ], where [Hþ ] is in units of molarity. Thus, the greater the
acidity of a solution, the lower its pH. A pH 7.0 solution
contains [Hþ ]¼1.0� 10�7 M. Since the concentration of
water is 55.5 M, it does not change much under most bio-
logical conditions. Thus, the equilibrium constant for water
can be simplified to

Kw ¼ ½Hþ�½OH�� ¼ 1:0� 10�14M2 ½16�

at 25 1C. This indicates that the ionization of water at 25 1C is
highly unfavorable since its DG0 is 19.1 kcal mol�1. However,
the extent of water ionization can be altered by the presence of
other species that can bind either Hþ or OH�. These species
include proteins, DNA, RNA as well as cellular metal ions.
From the Kw expression, one can obtain the [OH�] in aqueous
solution knowing the pH value. For example, if [Hþ ]
is 10�3 M, then [OH�]¼10�14/10�3¼10�11 M. In essence,
[Hþ ] and [OH�] exhibit a reciprocal relationship.

Acid–Base Reactions Play a Central Role in Most
Biochemical Processes

The equilibrium constant for the ionization of a weak acid, HA,
can be described as K¼([Hþ ][A�])/[HA]. The pK of this acid is
defined as pK¼ � log K. Thus the pH of a solution can be
calculated using the eqn [17], known as Henderson–Hassel-
balch equation, if the molar ratio of A- to HA and the pK of HA
is known. Conversely, the pK of an acid can be calculated if the
molar ratio of A- to HA and the pH of the solution is known.

pH¼ pKþ logð½A��=½HA�Þ ½17�

When a solution contains a weak acid–base conjugate pair, for
example, acetic acid and acetate, it can serve as a buffer with
the capacity to prevent a significant change in its pH due to the
addition of a small quantity of either strong acid or base. In
general, the best buffer capacity of a given buffer system occurs
in a range of one pH unit on either side of its pK. Interestingly,
cells and organisms maintain a specific and constant cytosolic
pH to keep biomolecules in their optimal ionic state. Fur-
thermore, a significant change in pH can potentially lead to
protonation or deprotonation of key functional groups of
biomacromolecules that cause disruption of their molecular
structures and lead to harmful biological effects. Thus, nature
has evolved to minimize pH changes in biological systems. To
this end, biological systems make use of a number of weak
acids as their buffer systems to maintain a relatively constant
physiological pH, typically around pH 7.4. Since a buffer
functions best close to its pK value, among the biological
buffers, phosphoric acid, which exists primarily in a near equal
mixture of H2PO4

� and HPO4
2� at about pH 7.4, plays a

major role to maintain physiological pH. Consistent with this
notion, inorganic phosphate is present at about 1 mM in
blood for maintaining its pH at 7.4.

Noncovalent Interactions Play Key Roles in Mediating
Functions of Biomacromolecules

Weak noncovalent interactions exert a decisive role in main-
taining the structure and function of macromolecules,
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although all biomacromolecules are formed mainly by co-
valently linked carbon bonds (bond energy B85 kcal mol�1),
and covalent interconversion of enzyme cascades, which pos-
sess an enormous capacity for signal and rate amplification,
play important roles in regulating cell signaling and metab-
olism (Chock and Stadtman, 1996). Specifically, noncovalent
interactions are involved in stabilizing the double helix
structure of DNA, in orchestrating RNAs interactions to exert
their transcriptional and translational regulation, and in the
folding of proteins/enzymes into intricate three-dimensional
structures to accommodate their enzymatic activities and
substrate specificity. The four extensively utilized noncovalent
interactions are electrostatic interactions, hydrogen bonding
interactions, van der Waals interaction, and hydrophobic
interactions. They differ in their nature of their interactions,
bond strength and specificity as follows: (1) Electrostatic
interactions, resulting from the Coulombic interaction be-
tween two opposite atomic charges located on two molecules.
The energy of this interaction is governed by Coulomb’s law,
namely, E¼kq1q2/Dr, where E is the energy, q1 and q2 are the
charges on the two atoms, at r angstroms apart, D is the di-
electric constant of the medium and k is a proportionality
constant, which has a value of 332 when the energy is ex-
pressed in kcal mol�1. By convention, an attractive
interaction would have a negative energy. In an aqueous
medium, D¼80, when r¼3 Å between the two ions bear
single opposite charges, the electrostatic interaction energy is
� 1.4 kcal mol�1. However, this interaction is significantly
strengthened when it occurs on the protein surface (B� 4.8
kcal mol�1) or in the interior of the protein (B� 60 kcal
mol�1) due to changes in the dielectric constant of the reaction
medium. (2) Hydrogen bonds, where the hydrogen atom is
partially shared by two electronegative atoms such as nitrogen
or oxygen. This leads to a favorable dipole–dipole interaction.
The strength of this interaction falls off quickly with distance,
or when the angle between the dipole is far from linear.
Hydrogen bonds between the protein back bone amide ni-
trogen and carboxyl oxygen play a major role in stabilizing the
α-helix and β-sheet structure of proteins, as well as deter-
mining the conformation of proteins. The energy for hydrogen
bonds is in the range of B1–5 kcal mol�1. (3) van der Waals
interactions, derived from weak attractions that occur between
atoms in close proximity to each other. The basis of these
interactions is the attraction of the positively charged nucleus
and negatively charged electron clouds between different
atoms. For atoms commonly found in biological molecules,
van der Waals attractions are optimal at distances between 3
and 4 Å, and become negligible beyond 5 Å. The van der Waals
repulsion prevents atoms getting much closer than B3 Å
apart. The energy associated with the van der Waals interaction
isB0.5–1 kcal mol�1, depending on the van der Waals dis-
tance. (4) Hydrophobic interactions are due to the tendency of
nonpolar molecules to stick together in an aqueous medium.
Nonpolar molecules do not easily dissolve in water, in part
due to their inability to participate in hydrogen bonding or
ionic interactions with water and to restructure the hydrogen
bonding among water molecules. The poor solubility is gov-
erned by a large entropy reduction. A model, generally known
as the iceberg model, has been proposed to provide a mo-
lecular interpretation for the large entropy loss to the structural

enhancement of water molecules near the vicinity of a non-
polar solute. However, the validity of this model is still a
matter for debate, in view of recent experimental and theore-
tical analysis that reveals that water does not form a structure
around the nonpolar solute at room temperature and a large
part of negative entropy of solvation can be attributed to the
small size of water molecules such that the nonpolar solute
can interact with high number of water molecules and leads to
a large decrease in entropy. For details on this issue, please see
reference (Blokzijl and Engberts, 1993; Lee, 1985). Neverthe-
less, hydrophobic interactions are well accepted as the dom-
inant energetic factor to mediate the formation of protein
tertiary structure, enzyme–substrate/effector interaction and
the stability of biological membranes.

While each of these noncovalent interactions is relatively
weak, collectively they determine the biological structures and
functions of proteins, nucleic acids, lipids, and carbohydrates.
It is essential to note that every ion in an aqueous medium is
surrounded by a shell of oriented water molecules maintained
by the attraction of water dipoles to the charged ion. Thus,
hydration of ions has a major influence on all aspects of
electrostatic interactions for which the strength of acids and
bases plays an important role. Since proteins contain multiple
acidic and basic groups, it is reasonable to expect both
the conformation and activity of enzymes to be altered as a
function of the concentration of hydrogen ions.

Effect of Molecular Crowding in Living Cells

The biochemical and biophysical principles discussed in pre-
ceding sections were derived mainly from in vitro studies
using pure reactants, often small molecules, or in relatively
low concentrations, for example, less than 1 mg ml�1 of total
macromolecule such as protein, nucleic acids, or poly-
saccharides. However, all cells contain various biomacromo-
lecules at high concentration (Hoppert and Mayer, 1999).
Biochemical reactions in living cells occur in media crowded
with other soluble or structured macromolecules, resulting in
nonspecific interactions between individual macromolecules
and their immediate surroundings in the cytosol. These
background interactions lead to three different phenomena:
(1) macromolecular crowding, attributed to volume excluded
by one soluble macromolecule to another; (2) macro-
molecular confinement, attributed to steric-repulsive inter-
actions between the macromolecule of interest and its static
boundaries; and (3) macromolecular adsorption, due to re-
versible association of a macromolecule to the surface of a
nearby fiber or membrane (Minton, 2006). Nonspecific
interactions may either be repulsive, leading to preferential
size and shape dependent exclusion, or attractive, leading to
nonspecific binding or adsorption. Predominantly repulsive
background interactions tend to enhance the rate and extent of
macromolecular association in solution, while predominantly
attractive background interactions tend to enhance the ten-
dency of macromolecules to cluster nonspecifically or adsorb
onto surfaces. However, in a complex and heterogeneous
medium of the cytoplasm, it is a challenge to discern whether
the locally dominant background interactions are likely to be
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attractive or repulsive and to identify their effects on any
specific reaction.

Molecular crowding, in principle, can markedly slow down
the diffusion rate. Consequently crowding plays a role in all
biological processes mediated by noncovalent associations
or conformational changes of the macromocules, such as
those involved in the synthesis of nucleic acids and proteins,
intermediary metabolism and cell signaling, as well as the
functioning of dynamic motile systems. In general, macro-
molecular crowding nonspecifically enhances reactions leading
to the reduction of total excluded volume, independent of
hydrogen bondings, van der Waals forces or charges. These re-
actions include the formation of macromolecular complexes in
the medium, binding of macromolecules to surface binding
sites, formation of insoluble aggregates, as well as compaction
or folding of proteins. Simple statistical-thermodynamic mod-
eling studies reveal that the ‘passive crowding macromolecules’
could exert order-of-magnitude or greater changes in both the
rates and equillibria of numerous reactions tested. To this end,
one should also recognize that system studies via simulation are
still models instead of the real thing. Not all idiosyncratic de-
tails of the model system are of general value for understanding
the real cellular system. Biological systems are more complex
than theoretical or in vitro experimental studies because of en-
hanced heterogeneity and the presence of nonspecific repulsive
and attractive intermolecular interactions in addition to volume
exclusion. Model studies also show that the magnitude of the
effects is strongly dependent on the relative sizes and shapes of
the concentrated crowding species used and on the nature of the
macromolecular reactants and products. However, to date, the
results obtained via model simulation studies have provided
important new insights for understanding the subject. In view
of the complexity and heterogeneity of the intracellular fluids,
results from simplified model studies can only partially address
the complex problems encountered with the in vivo system
(Zhou et al., 2008; Ellis, 2001).

The densely packed environment in the cytosol appears
to impede the folding of relatively large polypeptides
since their diffusion rates would be more drastically reduced
relative to those of smaller polypeptides. Furthermore, the
presence of a large number of crowding macromolecules
would increase the probability for a newly synthesized poly-
peptide to interact with other macromolecules before it
can properly fold. To overcome these problems, nature
makes use of a class of molecular chaperones as well as a
number of protein disulfide isomerases to facilitate proper
folding of nascent proteins, including those mediated by
cysteine disulfide bond formation, to yield functional pro-
teins. As a result, proteins are found to be folded very effi-
ciently when synthesized inside the cell. Anfinsen showed
that it took several hours for ribonuclease-A to fold in the test
tube, a rate much slower than the rate at which functional
ribonuclease-A is produced in cells (about 2 min.). A similar
rationale was adopted in cell signaling. To facilitate cell
signaling processes inside crowded cytosols, scaffold or
anchorage proteins are adopted to generate signalsomes to
process cell signaling. To this end, formation of intracellular
Dishevelled-based signalsomes has been demonstrated to
occur during the activation of Wnt signaling (Yokoyama
et al., 2010).

Concluding Remarks

To understand the molecular mechanisms of biological pro-
cesses through which living cells stay alive, grow, reproduce,
and evolve, we must understand how fundamental chemical
and physical principles govern these reactions. In this article,
a brief discussion is provided of (1) the chemical nature
of cellular macromolecules, (2) the roles of water molecules
and noncovalent interactions in stabilizing the reactive
conformations of these macromolecules, (3) thermodynamic
principles which determine whether reactions can occur
spontaneously, and (4) principles of reaction kinetics in
maintaining reaction processes at dynamic steady states, away
from reaction equilibrium. For a more in-depth under-
standing of these principles, readers are referred to additional
literature (Edsall and Gutfreund, 1983; Alberty, 2003; Moore
and Pearson, 1981; Purich, 2010; Connors, 1990; Zhou et al.,
2008; Ellis, 2001; Yokoyama et al., 2010; Atkins and de Paula,
2012). Finally, the potential effects of molecular crowding
inside the cell were discussed in terms of principles derived
from in vitro studies with dilute purified macromolecules and
high substrate concentrations.
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Introduction

Biological Catalysts

Enzymes and ribozymes are essential to life. These macro-
molecules catalyze a vast array of chemical reactions that, in the
absence of the biocatalyst, would take place at very low intrinsic
and uncoordinated rates incompatible with life. Biocatalysts
control the complex chemistry of thousands of life processes
through acceleration and regulation of the rates of virtually
every chemical reaction important to life. Prevention of un-
wanted chemical reactions relies on keeping reactive molecules
apart through compartmentalization or on binding of the
chemicals to macromolecules that stabilize their desired forms.

The magnitudes of rate enhancement brought about by
biocatalysts approach astronomical values. For example, at
25 1C uncatalyzed hydrolysis of phosphodiester linkages
between nucleotides in DNA proceeds with a half-life (t1/2) of
30 000 000 years (Schroeder et al., 2006). The refractory nature
of phosphodiester linkages between nucleotides in DNA
permits preservation of genetic information for hundreds of
thousands, if not millions, of years. Yet biological processes
at times require certain phosphodiester linkages in DNA to
be cleaved. Staphylococcal nuclease, one of the enzymes that
catalyzes DNA-hydrolysis, functions with a turnover number
of 95 s�1, corresponding to a t1/2 of 7 ms. This enormous rate
difference, or enzymatic enhancement factor, of 1.4� 1017

corresponds to typical values for enzymes, and is neither the
minimum nor the maximum. Nonenzymatic counterparts of
certain enzymatic reactions are too slow to measure, so that
only lower limits of rate enhancements for those reactions can
be estimated.

In life, individual biocatalytic rates must be coordinated,
and they must change under varying cellular developmental,
metabolic, and environmental conditions. Coordination arises
through several mechanisms. In genetic regulation, the relative
amounts of enzymes produced by gene transcription and
translation can be regulated to produce the appropriate
amounts of metabolically or developmentally related en-
zymes. In metabolic control, metabolites regulate the activities
of key enzymes through allosteric effects upon binding to
regulatory sites of key enzymes. For example, in end-product
inhibition the enzyme catalyzing the first committed step in
a metabolic or biosynthetic pathway is often inhibited by
the end product of that pathway, thereby shutting it down
once the end product rises to an optimal concentration. The
intra-organelle microenvironments in cells can activate or
inhibit certain enzymes. For example, the acidic environments
in lysosomes activate pH-dependent proteolytic enzymes.
Posttranslational modifications of enzymes such as reversible
phosphorylation of specific amino acid side chains are also
important control mechanisms. These regulatory processes
orchestrate the best balance of enzymatic activities to support
the life of an organism.

Enzymes

Composition

Most biocatalysts are proteins known as enzymes. As proteins,
they are linear polypeptides composed of the 20 common
α-amino acids (Table 1) linked by peptide amide bonds.
They range in molecular weights from B8000 to 4150 000.
The polypeptide chains of enzymes are folded into definite
globular structures, many of which have been determined by
X-ray crystallography or by nuclear magnetic resonance spec-
troscopy. The folded structures include secondary, periodic
structures of α-helix and β-sheet segments, together with non-
periodic loop-segments. More than 5000 ‘different’ enzymes
are currently covered by the Enzyme Commission, and more
are discovered each year.

Figure 1 depicts the protein chain fold of homodimeric
enolase, showing the α-helical, β-sheet segments, and loop seg-
ments. Enolase catalyzes the dehydration of 2-phosphoglycerate
to phosphoenolpyruvate. The chain fold of the core of enolase
is widely known as the TIM barrel, named for the first enzyme
found to display this fold, triosephosphate isomerase. It is
also known as the β-barrel. While many protein chain folds
are known, the TIM barrel is highly versatile and serves many
purposes in enzymology. About 10% of known enzyme
structures are based on the TIM barrel.

Enzymes exist as single polypeptides or as aggregates
of identical or different subunits. Multisubunit enzymes can be
dimers, trimers, tetramers, pentamers, hexamers, etc. of iden-
tical subunits. Some enzymes have nonidentical subunits, in
which the subunits are either different enzymes catalyzing re-
lated reactions or regulatory entities that control catalytic rates.
The largest aggregated enzymes include several enzymes acting
in concert to catalyze processive reactions. Examples include
α-ketoacid dehydrogenase complexes, which contain three
enzymes plus regulatory subunits and are approximately
the size of ribosomes. Other examples are the fatty acid syn-
thase complexes, which contain six enzymes and produce fatty
acids from acetyl coenzyme A in assembly-line fashion. Poly-
ketide synthases and nonribosomal polypeptide synthases are
analogous, aggregated enzymes that produce antibiotics such
as erythromycin and tyrocidine.

Kinetics

Activities of typical enzymes can be measured as initial rates
under specified conditions. Dependence of initial rates pro-
duced by a fixed amount of an enzyme, acting on varying
concentrations of the substrate, produce hyperbolic plots of
rate against substrate concentrations. The plots are consistent
with the Briggs–Haldane revision of the Michaelis–Menten
kinetic mechanism and the corresponding rate law, eqns [1]
and [2a], where E, S, and P represent enzyme, substrate, and
product. In eqn [2a], Km¼(k2þ k3)/k1 and Vm¼k3[E0]. Note
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that the dissociation constant of the substrate, Kd, is defined
as k2/k1.

Eþ S⇌
k1

k2
ES-

k3 Eþ P ½1�

v¼ Vm½S�
Km þ ½S� ½2a�

1
v
¼ 1

Vm
þ Km

Vm
� 1½S� ½2b�

Equation [2a] predicts that when [S] { Km, the rate is pro-
portional to [S], and when [S]cKm the rate approaches Vm, the
maximum as shown in Figure 2(a). The maximum rate in any
experiment is proportional to the enzyme concentration [E0].
The reciprocal form of eqn [2a] (eqn [2b]; Figure 2(b)) predicts
a linear relationship between 1/v and 1/[S] having an intercept
on the ordinate of 1/Vm and a slope of Km/Vm. Manual fitting
of kinetic data is facilitated by the linear form, whereas com-
puter programs can be used to fit data directly to eqn [2a].

Equation [1] refers to an enzyme with one substrate and
one product. Many complex enzymes act on two, three, or
more substrates. In such cases, more complicated kinetic
mechanisms apply, and the rate laws are correspondingly more
complex, with more terms in the numerators and denomin-
ators than in eqn [2a]. However, for enzymes not subject to

special regulatory effects, the complex equations are reducible
to the form of the Michaelis–Menten equation when all co-
substrates are held constant and only one is varied. In these
cases, the measured parameters are apparent values Vm

app and
Km

app, from which limiting values can be obtained by varying
the concentrations of co-substrates in further analysis.

A full discussion of multisubstrate kinetics lies beyond the
scope of this article. However, the complications can be ap-
preciated by considering the general patterns for two-substrate,
two-product reactions, the case of substrates A and B reacting to
form products C and D. The most common case is that of eqn
[3], where the two substrates become associated with the en-
zyme in stepwise fashion, either in random order or in com-
pulsory order, to form the ternary complex E.A.B in eqn [3]. The
substrates react within the ternary complex to form the products
C and D, which dissociate in either random or ordered steps.
Kinetic mechanisms of this type are known as sequential
mechanisms. The rate eqn [4] describes the initial rate kinetics
of the rapid equilibrium version of the sequential mechanism.

Eþ A þ B⇌
k1

k2
E:A:B-

k3 Eþ CþD ½3�

v¼ Vm½A�½B�
KiAKB þ KB½A� þ KA ½B� þ ½A�½B� ½4�

In eqn [4], KiA¼(E)(A)/(EA) is the dissociation constant of A,
KB¼(EA)(B)/(EAB), and KA¼(EB)(A)/(EAB). In an initial rate

Table 1 The α-amino acid structures

COOH

HCR

NH2

R– R–

Glycine H– Serine HOCH2–

Alanine CH3– Cysteine HSCH2–

Valine (CH3)2CH– Aspartic acid HO2C–CH2–

Leucine (CH3)2CH2CH– Glutamic acid HO2C–CH2CH2–

Isoleucine CH3(CH3)CHCH2– Histidine
N

NH

CH2

Phenylalanine
CH2

Tyrosine
CH2OH

Tryptophan

NH

CH2
Lysine H2NCH2CH2CH2CH2–

Proline

N
H

Arginine

H2N−C−NH−CH2CH2⎯

NH
∼

Asparagine H2NCO–CH2– Cystine S−CH2 ⎯

⎯ CH2−S

Glutamine H2NCO–CH2CH2–

Threonine CH3(OH)CH–
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study with [B] held constant and [A] varied, the data can be
treated as in the one-substrate case.

Another kinetic mechanism frequently observed is that
described in eqns [5a] and [5b]. In this mechanism substrate A
binds and reacts chemically with the active site, transforming it
in a distinctive way to a form designated as E-x and releasing
product C. The transformation can frequently be ligation of
a group (-x) from the substrate to the enzyme. Alternatively,
reducing equivalents can be transferred to a cofactor (see
below) at the active site. The chemically modified enzyme then
reacts with the second substrate B, transferring the group (-x)
to form product D. Kinetic schemes of this type are frequently

called ping pong mechanisms.

Eþ A⇌E:A-E-x þ C ½5a�

E-x þ B⇌
k1

k2
E-x:B-

k3 EþD ½5b�

v¼ Vm½A�½B�
KA½B� þ KB½A� þ ½A�½B� ½6�

The rate equation for the ping pong mechanism (eqn [6]) lacks
the constant term, KiAKB, in the denominator of eqn [4].

Lys345 Lys345

NH2 NH3
+

H

HH

HO

O

O

Glu211

OH

OPO3
2− OPO3

2− OPO3
2−

−O

−O

−O −O

−O

H H H

H2O

H
OH

HO O

O

Glu211

O

Glu211

Lys345

NH3
+

(a)

(b)

Figure 1 The structure and mechanism of enolase. (a) Shows a cartoon representation of the molecular structure of homodimeric enolase from
baker’s yeast. Secondary structural elements are color coded in one subunit of the dimer: cyan α-helical; red β-sheet; wheat loops. The tightly bound
Mg2þ in each subunit appears as a sphere. The eight-stranded barrel is atypical in having one strand pointed in the opposite direction. The structure
was obtained from PDB file 1ONE (Larsen et al., 1996). (b) Shows the stepwise mechanism by which enolase catalyzes the dehydration of (R)-2-
phosphoglycerate, showing the acid–base catalysis by Glu211 and Lys345 and the intermediate formation of the enolate (Poyner et al., 1996).
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Double reciprocal plots of data, 1/v versus 1/[B] at different
concentrations of A appear as parallel lines, having a common
slope and different intercepts. A particular property of this
mechanism is that the intermediate E-x can be generated,
isolated, and chemically characterized by excluding substrate
B. This provides chemical information about the reaction
mechanism and the function of the active site. A compilation
of kinetic expressions and details of their applications are
available (Segel, 1993; Cook and Cleland, 2007).

Whether a multisubstrate enzyme functions by a sequential
or ping pong mechanism depends on several factors, including
the type of chemical reaction. Comparisons of the mechanisms
of chemically similar phosphotransfer reaction, where –x is a
phosphoryl or nucleotidyl group, have led to the principle of
economy in the evolution of binding sites as a governing
factor (Frey, 1992). The central fact that phosphotransfering
enzymes function by ping pong mechanisms when the phos-
pho-accepting substrates are sterically and electrostatically re-
lated inspired the postulation of this principle. The kinetic and
chemical mechanisms of adenylate kinase (AK) and nucleo-
side diphosphate kinase (NucDipK) exemplify this principle.

ATPþ AMP⇌
AK
ADPþ ADP ½7�

ATPþNDP ⇌
NucDipK

ADPþNTP ½8�

AK functions by a sequential mechanism, whereas NucDipK
functions by a ping pong mechanism, in which � x is the
phosphoryl group (PO3) bonded to a histidine residue.
Overall, the reactions are chemically similar, phosphoryl
transfer between phosphogroups. In the action of NucDipK,
the sterically and electrostatically similar phosphoacceptors,
NDP going forward and ADP in reverse, occupy the same
binding site. Thus, the enzyme needs just one binding site,
incorporating the phospho-accepting histidine residue.

In the reaction of AK two binding sites are required. The
phosphoacceptors, AMP going forward and ADP in reverse,
are sterically and electrostatically incompatible with a single
binding site. Therefore, AK has a phosphodonor site and a
phosphoacceptor sites. This allows ternary complex formation
(E.ATP.AMP) and avoids the need for an E-PO3 to bind the
phosphoryl group during the interchange of phosphocceptors.

The principle of economy in the evolution of binding sites
appears to govern a number of other classes of enzymatic
reaction mechanisms, where single binding sites function in
double-duty fashion (Frey, 1992; Grove et al., 2011).

Substrate Selectivity

The specificity of enzymes for their substrates is frequently
overstated. ‘Highly selective’ is a more apt description of their
capacity to discriminate among similar molecules. Most en-
zymes will act on molecules related to their natural substrates,
but at lower rates. An enzyme often functions on alternative
substrates at 1/100th or 1/1000th the rate for the natural
substrate, and such a rate could still correspond to a rate
enhancement of, for example, 108–1012. Metabolism of drugs
and other xenobiotic compounds typically exploits the cap-
acity of enzymes to function with alternative substrates.

Cooperativity and Allosteric Regulation

In classical behavior, each active site in a multi-subunit
enzyme acts independently of neighboring subunits. Multi-
subunit enzymes may also exhibit cooperative behavior
among subunits in binding of substrates and in catalysis such
that binding of a substrate to one subunit influences the
subsequent binding of substrate to neighboring subunits. This
cooperative behavior, either negative or positive, may also be
modulated by effector molecules that bind to distinct regu-
latory sites in the oligomer termed allosteric sites.
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Figure 2 Reaction kinetics for an enzymatic reaction having a single substrate and single product. (a) Shows the direct plot of velocity, v, versus
substrate concentration, [S], according to eqn [2a] (see text) using Vm of 5 (arbitrary units) and a Km of 0.25 (arbitrary units). (b) Shows the
same data plotted in double reciprocal form according to eqn [2b], where the ordinate intercept is 1/Vm and the slope is Km/Vm.
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Cooperativity and associated allosteric control provide a
means to ‘fine tuning’ of catalytic activity to meet changing
demands of cells and organisms.

Chemical Mechanisms

Rates of chemical reactions can be described in terms of
transition state theory also known as absolute reaction rate
theory. This formalism accounts for the temperature depend-
ence of thermally activated chemical reactions. Descriptions of
photochemical and electron transfer reactions are slightly dif-
ferent. For thermally activated reactions, a tiny fraction of the
reactant(s) (determined by the Boltzmann distribution law)
initially in their ground vibrational state(s), acquire from their
surrounding, sufficient excess internal (vibrational) energy
to ascend transiently to a high energy state, called the transi-
tion state or activated complex. In a reaction coordinate dia-
gram, the transition state is located at the apex – a position
at which the molecule or complex can descend either in the
reverse direction to reactant(s) or in the forward direction
to product(s). Figure 3 illustrates the relevant energies for the
reaction of a substrate S to a product P by way of S‡, the
transition state or activated complex. The activation energy for
the spontaneous reaction is Ea

S.
In the corresponding enzymatic reaction, Figure 3 shows the

energy of activation Ea
ES for the E.S complex. The ground state

for the E.S complex is shown as slightly lower than for the
spontaneous reaction. The difference Ea

S
–Ea

ES¼DEa represents
the decrease in activation energy for the enzymatic relative
to the nonenzymatic reaction. This difference represents the
magnitude of enzymatic catalysis, or the rate enhancement.
Because activation energies have an inverse exponential influ-
ence on rates (Boltzmann distribution of activated complexes)

modest changes in DEa translate to large changes in rate. Al-
though kinetic measurements can detect small changes in the
activation energy, the general rule is that the smallest free energy
difference that can be conceptualized is B1 kcal, which cor-
responds to a rate difference of approximately sevenfold. When
functioning as catalysts at concentrations much less than those
of their respective substrates, enzymes do not alter the ther-
modynamic equilibria of the reactions that they catalyze but
rather alter only the rate at which equilibrium is attained.

Rate enhancement by enzymes begins with the binding
of substrate(s) at the pre-organized active site, where the
substrate(s) is or are bound in close proximity to catalytic
groups within the active site. For enzymes that do not require a
cofactor or coenzyme, the catalytic groups are one or more
of the reactive amino acid side chains in the right-hand
column of Table 1. Each of these groups, with the exception
of cystine, displays both acid/base and nucleophilic reactiv-
ities. In different enzymes, each group functions either as a
nucleophilic catalyst or as an acid/base catalyst. For example,
in the reaction of enolase (Figure 1) the elimination of water
from 2-phosphoglycerate is facilitated by acid–base catalysis
by Lys345 and Glu211. In the action of NucDipK, phospho-
transfer is facilitated by a histidine residue and nucleophilic
catalysis (see above).

Transition State Analogs and Catalytic Antibodies

A prediction of transition state theory is that a substantial part
of the catalytic rate enhancement of enzymes is due to a tight
binding of the transition state of the respective reaction.
Molecules that mimic the transition state of an enzyme-
catalyzed reaction (transition state analogs) are expected to
bind to the active site with high affinity (Wolfenden, 1972). A
substantial fraction of drugs are molecules that bind to en-
zymes in place of the normal substrates and thereby inhibit
the activity of the target enzyme. The transition state analog
approach to design of selective tight binding inhibitors of
target enzymes has been practiced with substantial success
(Schramm, 2007).

Another practical application of transition state mimics
is in the generation of antibodies that have catalytic activities
for specific reactions. Antibodies arise in the blood serum of
animals in the process of immunization, which entails ex-
posure to foreign proteins, antigens, for example, the coat
proteins of bacteria or viruses. Antibodies are produced in
specialized mammalian cells and released into the blood
stream. They recognize and mark antigen molecules for de-
struction by binding them very tightly (KdB10�14 M). Anti-
bodies are large protein molecules, in which a smaller domain,
the Fab fragment, encompasses the antigen-binding site. An
antigen-binding site recognizes and binds segments known as
epitopes of antigenic proteins. An epitope might be a dec-
apeptidyl unit within a foreign protein. However, antigen-
binding sites are not limited to polypeptides as ligands and
may bind other molecules as well. Thus, immunization of an
animal with a foreign protein chemically linked to a dini-
trophenyl (DNP) group, a hapten, will lead to the production
of anti-DNP antibodies. The tight binding between an antigen
and an antibody can be exploited to create a catalytic anti-
body. In this method, a molecule embodying a stable,
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PE.S

E.S‡
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Figure 3 Relative potential energy curves along the reaction path for
chemical reactions. The upper curve shows the potential energy along
a reaction coordinate for a nonenzymatic reaction, showing the energy
of the transition state or activated complex S‡ at the maximum. The
activation energy is Ea‡. The lower curve depicts the potential-reaction
coordinate for the same reaction catalyzed by an enzyme. The
activation energy is EaES.
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